Browse > Article

Characterization of an Extracellular Xylanase in Paenibacillus sp. HY-8 Isolated from an Herbivorous Longicorn Beetle  

Heo, Sun-Yeon (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kwak, Jang-Yul (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology)
Oh, Hyun-Woo (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology)
Park, Doo-Sang (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology)
Bae, Kyung-Sook (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology)
Shin, Dong-Ha (Insect Biotech Co. Ltd.)
Park, Ho-Yong (Insect Resources Research Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.11, 2006 , pp. 1753-1759 More about this Journal
Abstract
Paenibacillus sp. HY-8 isolated from the digestive tracts of the longicorn beetle, Moechotypa diphysis, produced an extracellular endoxylanase with a molecular weight of 20 kDa estimated by SDS-PAGE. The xylanase was purified to near electrophoretic homogeneity from the culture supernatant after ammonium sulfate precipitation, gel filtration, and ionexchange chromatography. The purified xylanase exhibited the highest activities at pH 6.0 and $50^{\circ}C$. The $K_m\;and\;V_{max}$ values were 7.2 mg/ml and 16.3 U/mg, respectively, for birchwood xylan as the substrate. Nucleotide sequence of the PCR-cloned gene was determined to have the open reading frame encoding a polypeptide of 212 amino acids. The N-terminal amino acid sequence and the nucleotide sequence analyses predicted that the precursor xylanase contained a signal peptide composed of 28 amino acids and a catalytically active 19.9-kDa peptide fragment. The deduced amino acid sequence shared extensive similarity with those of the glycoside hydrolase family 11 of xylanases from other bacteria. The predicted amino acid sequence contained two glutamate residues, previously identified as essential and conserved for active sites in other xylanases of the glycoside hydrolase family 11.
Keywords
Paenibacillus; xylanase; purification; xylan;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 20  (Related Records In Web of Science)
연도 인용수 순위
1 Kim, K. J., K. N. Kim, and Y. J. Choi. 2004. Characterization of the arfA gene from Bacillus stearothermophilus No. 236 and its protein product, ${\alpha}-_L$-arabinofuranosidase. J. Microbiol. Biotechnol. 14: 474-482   과학기술학회마을
2 Lee, C. C., M. Smith, R. E. Kibblewhite-Accinelli, T. G. Williams, K. Wagschal, G. H. Robertson, and D. W. Wong. 2006. Isolation and characterization of a cold-active xylanase enzyme from Flavobacterium sp. Curr. Microbiol. 52: 112-116   DOI
3 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428   DOI
4 Rivas, R., P. F. Mateos, E. Martinez-Molina, and E. Velazquez. 2005. Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. Int. J. Syst. Evol. Microbiol. 55: 743-746   DOI   ScienceOn
5 Rivas, R., M. E. Trujillo, P. Schumann, R. M. Kroppenstedt, M. Sanchez, P. F. Mateos, E. Martinez-Molina, and E. Velazquez. 2004. Xylanibacterium ulmi gen. nov., sp. nov., a novel xylanolytic member of the family Promicromonosporaceae. Int. J. Syst. Evol. Microbiol. 54: 557-561   DOI   ScienceOn
6 Teunissen, M. J., A. A. Smits, H. J. Op den Camp, J. H. Huis in 't Veld, and G. D. Vogels. 1991. Fermentation of cellulose and production of cellulolytic and xylanolytic enzymes by anaerobic fungi from ruminant and non-ruminant herbivores. Arch. Microbiol. 156: 290-296   DOI
7 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
8 Brune, A., E. Miambi, and J. A. Breznak. 1995. Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites. Appl. Environ. Microbiol. 61: 2688-2695
9 Coughlan, M. P. and G. P. Hazlewood. 1993. Beta-1,4-$_D$-xylan-degrading enzyme systems: Biochemistry, molecular biology and applications. Biotechnol. Appl. Biochem. 17(Pt 3): 259-289
10 Heo, S., H. W. Oh, D. S. Park, K. S. Bae, H. Y. Park, and J. Kwak. 2006. Polyphasic assignment of highly xylanolytic bacteria isolated from a longicorn beetle. (In preparation)
11 Wong, K. K., L. U. Tan, and J. N. Saddler. 1988. Multiplicity of beta-1,4-xylanase in microorganisms: Functions and applications. Microbiol. Rev. 52: 305-317
12 Bae, S. H. and Y. J. Choi. 1991. Purification and characterization of an extracellular xylanase of Bacillus stearothermophilus. Kor. J. Appl. Microbiol. Biotechnol. 19: 592-597   과학기술학회마을
13 Thomson, J. A. 1993. Molecular biology of xylan degradation. FEMS Microbiol. Rev. 10: 65-82
14 Viikari, L., A. Kantelineo, J. Bundquist, and M. Linko. 1994. Xylanase in bleaching: From an idea to the industry. FEMS Microbiol. Rev. 13: 335-350   DOI
15 Kim, B. G., B. R. Jung, J. G. Jung, H. G. Hur, and J. H. Ahn. 2004. Purification and characterization of ${\beta}$-xylosidase from Trichoderma strain SY. J. Microbiol. Biotechnol. 14: 643-645
16 Wolf, M., A. Geczi, O. Simon, and R. Borriss. 1995. Genes encoding xylan and beta-glucan hydrolysing enzymes in Bacillus subtilis: Characterization, mapping and construction of strains deficient in lichenase, cellulase and xylanase. Microbiology 141: 281-290   DOI   ScienceOn
17 Heo, S. Y., J. K. Kim, Y. M. Kim, and S. W. Nam. 2004. Xylan hydrolysis by treatment with endoxylanase and ${\beta}$-xylosidase expressed in yeast. J. Microbiol. Biotechnol. 14: 171-177
18 Nascimento, R. P., R. R. R. Coelho, S. Marques, L. Alves, F. M. Girio, E. P. S. Bon, and M. T. Amaral-Collaco. 2002. Production and partial characterization of xylanase from Streptomyces sp. strain AMT-3 isolated from Brazilian cerrado soil. Enzyme Microb. Technol. 31: 549-555   DOI   ScienceOn
19 Lee, Y. E. and P. O. Lim. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG-22. J. Microbiol. Biotechnol. 14: 1014-1021
20 Pell, G., E. J. Taylor, T. M. Gloster, J. P. Turkenburg, C. M. Fontes, L. M. Ferreira, T. Nagy, S. J. Clark, G. J. Davies, and H. J. Gilbert. 2004. The mechanisms by which family 10 glycoside hydrolases bind decorated substrates. J. Biol. Chem. 279: 9597-9605   DOI   ScienceOn
21 Li, H., D. Faury, and R. Morosoli. 2006. Impact of amino acid changes in the signal peptide on the secretion of the Tat-dependent xylanase C from Streptomyces lividans. FEMS Microbiol. Lett. 255: 268-274   DOI   ScienceOn
22 Martinez, M. A., O. D. Delgado, J. D. Breccia, M. D. Baigori, and F. Sineriz. 2002. Revision of the taxonomic position of the xylanolytic Bacillus sp. MIR32 reidentified as Bacillus halodurans and plasmid-mediated transformation of B. halodurans. Extremophiles 6: 391-395   DOI
23 Gilkes, N. R., B. Henrissat, D. G. Kilburn, R. C. Miller Jr., and R. A. Warren. 1991. Domains in microbial beta-1,4-glycanases: Sequence conservation, function, and enzyme families. Microbiol. Rev. 55: 303-315
24 Beg, Q. K., M. Kapoor, L. Mahajan, and G. S. Hoondal. 2001. Microbial xylanases and their industrial applications: A review. Appl. Microbiol. Biotechnol. 56: 326-338   DOI
25 Cho, S. G. and Y. J. C. 1995. Nucleotide sequence analysis of an endo-xylanase gene (xynA) from Bacillus stearothermophilus. J. Microbiol. Biotechnol. 5: 117-124
26 Cruden, D. L. and A. J. Markovetz. 1984. Microbial aspects of the cockroach hindgut. Arch. Microbiol. 138: 131-139   DOI
27 Nath, D. and M. Rao. 1998. Structural and functional role of tryptophan in xylanase from an extremophilic Bacillus: Assessment of the active site. Biochem. Biophys. Res. Commun. 249: 207-212   DOI   ScienceOn
28 Gilbert, H. J. and G. P. Hazlewood. 1993. Bacterial celluloses and xylanases. J. Gen. Microbiol. 139: 187-194   DOI
29 Matoub, M. and C. Rouland. 1995. Purification and properties of the xylanases from the termite Macrotermes bellicosus and its symbiotic fungus Termitomyces sp. Comp. Biol. 112: 629-635
30 Kulkarni, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnological aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456   DOI
31 Rivas, R., P. F. Mateos, E. Martinez-Molina, and E. Velazquez. 2005. Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. Int. J. Syst. Evol. Microbiol. 55: 405-408   DOI   ScienceOn
32 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   ScienceOn
33 Biely, P., Z. Kratky, and M. Vrsanska. 1981. Substrate-binding site of endo-1,4-beta-xylanase of the yeast Cryptococcus albidus. Eur. J. Biochem. 119: 559-564   DOI   ScienceOn
34 Liab, K., P. Azadi, R. Collins, J. Tolan, J. S. Kim, and K. L. Eriksson. 2000. Relationships between activities of xylanases and xylan structures. Enzyme Microb. Technol. 27: 89-94   DOI   ScienceOn
35 Ko, E. P., H. Akatsuka, H. Moriyama, A. Shinmyo, Y. Hata, Y. Katsube, I. Urabe, and H. Okada. 1992. Site-directed mutagenesis at aspartate and glutamate residues of xylanase from Bacillus pumilus. Biochem. J . 288: 117-121   DOI
36 Clarke, A. J. 1987. Essential tryptophan residues in the function of cellulase from Schizophyllum commune. Biochim. Biophys. Acta 912: 424-431   DOI
37 Samain, E., P. Debeire, and J. P. Touzel. 1997. High level production of a cellulase-free xylanase in glucose-limited fed batch cultures of a thermophilic Bacillus strain. J. Biotechnol. 58: 71-78   DOI   ScienceOn
38 Subramaniyan, S. and P. Prema. 2000. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183: 1-7   DOI
39 Sunna, A. and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67   DOI
40 Brennan, Y., W. N. Callen, L. Christoffersen, P. Dupree, F. Goubet, S. Healey, M. Hernandez, M. Keller, K. Li, N. Palackal, A. Sittenfeld, G. Tamayo, S. Wells, G. P. Hazlewood, E. J. Mathur, J. M. Short, D. E. Robertson, and B. A. Steer. 2004. Unusual microbial xylanases from insect guts. Appl. Environ. Microbiol. 70: 3609-3617   DOI   ScienceOn
41 Kubata, K. B., T. Suzuki, H. Horitsu, K. Kawai, and K. Takamizawa. 1992. Xylanase I of Aeromonas caviae ME-1 isolated from the intestine of a herbivorous insect (Samia cynthia pryeri). Biosci. Biotechnol. Biochem. 56: 1463-1464   DOI
42 Ghose, T. K. 1987. Measurement of cellulase activities. Pure Appl. Chem. 59: 257-268   DOI
43 Panbangred, W., A. Shinmyo, S. Kinoshita, and H. Okada. 1983. Purification and properties of endoxylanase produced by Bacillus pumilus. Agric. Biol. Chem. 47: 957-963   DOI