Browse > Article
http://dx.doi.org/10.4014/jmb.1312.12040

Effects of Halophilic Peptide Fusion on Solubility, Stability, and Catalytic Performance of $\small{D}$-Phenylglycine Aminotransferase  

Javid, Hossein (Department of Microbiology, Faculty of Science, Mahidol University)
Jomrit, Juntratip (Department of Microbiology, Faculty of Science, Mahidol University)
Chantarasiri, Aiya (Faculty of Science, Energy and Environment, King Mongkut's University of Technology North Bangkok (Rayong Campus))
Isarangkul, Duangnate (Department of Microbiology, Faculty of Science, Mahidol University)
Meevootisom, Vithaya (Department of Microbiology, Faculty of Science, Mahidol University)
Wiyakrutta, Suthep (Department of Microbiology, Faculty of Science, Mahidol University)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.5, 2014 , pp. 597-604 More about this Journal
Abstract
$\small{D}$-Phenylglycine aminotransferase ($\small{D}$-PhgAT) from Pseudomonas stutzeri ST-201 is useful for enzymatic synthesis of enantiomerically pure $\small{D}$-phenylglycine. However, its low protein solubility prevents its application at high substrate concentration. With an aim to increase the protein solubility, the N-terminus of $\small{D}$-PhgAT was genetically fused with short peptides ($A_1$ ${\alpha}$-helix, $A_2$ ${\alpha}$-helix, and ALAL, which is a hybrid of $A_1$ and $A_2$) from a ferredoxin enzyme of a halophilic archaeon, Halobacterium salinarum. The fused enzymes $A_1$-$\small{D}$-PhgAT, $A_2$-$\small{D}$-PhgAT, and ALAL-$\small{D}$-PhgAT displayed a reduced pI and increased in solubility by 6.1-, 5.3-, and 8.1- fold in TEMP (pH 7.6) storage, respectively, and 5-, 4.5-, and 5.9-fold in CAPSO (pH 9.5) reaction buffers, respectively, compared with the wild-type enzyme (WT-$\small{D}$-PhgAT). In addition, all the fused $\small{D}$-PhgAT displayed higher enzymatic reaction rates than the WT-DPhgAT at all concentrations of L-glutamate monosodium salt used. The highest rate, $23.82{\pm}1.47$ mM/h, was that obtained from having ALAL-$\small{D}$-PhgAT reacted with 1,500 mM of the substrate. Moreover, the halophilic fusion significantly increased the tolerance of $\small{D}$-PhgAT in the presence of NaCl and KCl, being slightly in favor of KCl, where under the same condition at 3.5 M NaCl or KCl all halophilic-fused variants showed higher activity than WT-$\small{D}$-PhgAT.
Keywords
$\small{D}$-Phenylglycine aminotransferase; halophilic peptide fusion; solubility; stability;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Torres S, Castro GR. 2004. Non-aqueous biocatalysis in homogeneous solvent systems. Enzyme 42: 271-277.
2 Tu Z, He G, Li K, Chen M, Chang J, Chen L, et al. 2005. An improved system for competent cell preparation and high efficiency plasmid transformation using different Escherichia coli strains. Electron. J. Biotechnol. 8: 114-120.
3 Wiyakrutta S, Meevootisom V. 1997. A stereo-inverting Dphenylglycine aminotransferase from Pseudomonas stutzeri ST-201: purification, characterization and application for Dphenylglycine synthesis. J. Biotechnol. 55: 193-203.   DOI   ScienceOn
4 Leuchtenberger W, Huthmacher K, Drauz K. 2005. Biotechnological production of amino acids and derivatives: current status and prospects. Appl. Microbiol. Biotechnol. 69: 1-8.   DOI   ScienceOn
5 Marg BL, Schweimer K, Sticht H, Oesterhelt D. 2005. A twoalpha- helix extra domain mediates the halophilic character of a plant-type ferredoxin from halophilic archaea. Biochemistry 44: 29-39.   DOI   ScienceOn
6 Miroliaei M, Nemat-Gorgani M. 2002. Effect of organic solvents on stability and activity of two related alcohol dehydrogenases: a comparative study. Int. J. Biochem. Cell Biol. 34: 169-175.   DOI   ScienceOn
7 Moelbert S, Normand B, De Los Rios P. 2004. Kosmotropes and chaotropes: modelling preferential exclusion, binding and aggregate stability. Biophys. Chem. 112: 45-57.   DOI   ScienceOn
8 Pace CN, Trevino S, Prabhakaran E, Scholtz JM. 2004. Protein structure, stability and solubility in water and other solvents. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359: 1225-1235.   DOI   ScienceOn
9 Puigbo P, Guzman E, Romeu A, Garcia-Vallve S. 2007. OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res. 35: W126-W131.   DOI
10 Rojanarata T, Isarangkul D, Wiyakrutta S, Meevootisom V, Woodley JM. 2004. Controlled-release biocatalysis for the synthesis of D-phenylglycine. Biocatal. Biotransform. 22: 195-201.   DOI   ScienceOn
11 Shaw KL, Grimsley GR, Yakovlev GI, Makarov AA, Pace CN. 2001. The effect of net charge on the solubility, activity, and stability of ribonuclease Sa. Protein Sci. 10: 1206-1215.   DOI   ScienceOn
12 Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. 2012. Engineering the third wave of biocatalysis. Nature 485: 185-194.   DOI   ScienceOn
13 Chantarasiri A, Meevootisom V, Isarangkul D, Wiyakrutta S. 2012. Effective improvement of D-phenylglycine aminotransferase solubility by protein crystal contact engineering. J. Mol. Microbiol. Biotechnol. 22: 147-155.
14 Eijsink VGH, Gaseidnes S, Borchert TV, van den Burg B. 2005. Directed evolution of enzyme stability. Biomol. Eng. 22: 21-30.   DOI   ScienceOn
15 Evans P, Wyatt K, Wistow GJ, Bateman OA, Wallace BA, Slingsby C. 2004. The P23T cataract mutation causes loss of solubility of folded $\gamma$D-crystallin. J. Mol. Biol. 343: 435-444.   DOI   ScienceOn
16 Hartsough DS, Merz KM. 1992. Protein flexibility in aqueous and nonaqueous solutions. J. Am. Chem. Soc. 114: 10113-10116.   DOI
17 Iyer PV, Ananthanarayan L. 2008. Enzyme stability and stabilization-aqueous and non-aqueous environment. Proc. Biochem. 43: 1019-1032.   DOI   ScienceOn
18 Kongsaeree P, Samanchart C, Laowanapiban P, Wiyakrutta S, Meevootisom V. 2003. Crystallization and preliminary Xray crystallographic analysis of D-phenylglycine aminotransferase from Pseudomonas stutzeri ST201. Acta Crystallogr. D 59: 953-954.   DOI   ScienceOn
19 Jariyachawalid K, Laowanapiban P, Meevootisom V, Wiyakrutta S. 2012. Effective enhancement of Pseudomonas stutzeri D-phenylglycine aminotransferase functional expression in Pichia pastoris by co-expressing Escherichia coli GroELGroES. Microb. Cell Fact. 11: 47.   DOI
20 Karan R, Capes M, DasSarma S. 2012. Function and biotechnology of extremophilic enzymes in low water activity. Aquatic Biosyst. 8: 4.   DOI   ScienceOn
21 Adamczak M. 2004. Strategies for improving enzymes for efficient biocatalysis. Food Technol. Biotechnol. 42: 251-264.
22 Mozhaev VV, Khmelnitsky YL, Sergeeva MV, Belova AB, Klyachko NL, Levashov AV, Martinek K. 1989. Catalytic activity and denaturation of enzymes in water/organic cosolvent mixtures. Eur. J. Biochem. 184: 597-602.   DOI   ScienceOn
23 Fukuchi S, Yoshimune K, Wakayama M, Moriguchi M, Nishikawa K. 2003. Unique amino acid composition of proteins in halophilic bacteria. J. Mol. Biol. 327: 347-357.   DOI   ScienceOn
24 Lee E, Kim Y, Lee H, Park S, Jung H, Lee J, et al. 2005. Stabilizing peptide fusion for solving the stability and solubility problems of therapeutic proteins. Pharmaceut. Res. 22: 1735-1746.   DOI