• Title/Summary/Keyword: peptide antibiotics

Search Result 75, Processing Time 0.026 seconds

The Function and Application of Antibiotic Peptides (항생펩타이드의 기능과 적용분야)

  • Lee, Jong-Kook;Gopal, Ramamourthy;Park, Yoonkyung
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.119-124
    • /
    • 2011
  • Currently, people are exposed to many harmful diseases. Therefore, there are many schemes, such as automation of productive facilities, development of information and communication technology, enhanced the quality of human life and wealth. However, these processes lead to weakened immune system. Thus, people are more vulnerable to infections from pathogens and environmental stress. Misuse and abuse of drugs resulted in the rapid emergence of multidrug-resistant microbes and tumors, therefore, to find new antibiotics are urgently needed. One of them is a peptide-antibiotic, that is not or less occurred a drug-resistance, comparing to conventional drugs. Peptides with various antibiotic activities have been identified from life organisms. The present review provides an overview of activities and application of peptide antibiotics.

Antimicrobial Activity of Antimicrobial Peptide LPcin-YK3 Derived from Bovine Lactophoricin

  • Kim, Ji-Sun;Jeong, Ji-Ho;Cho, Jang-Hee;Lee, Dong-Hee;Kim, Yongae
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1299-1309
    • /
    • 2018
  • We previously reported on lactophoricin (LPcin), a cationic ${\alpha}-helical$ antimicrobial peptide derived from bovine milk, which has antimicrobial effects on Candida albicans as well as Gram-positive and Gram-negative bacteria. In this study, we designed the LPcin-YK3 peptide, a shorter analog of LPcin, and investigated its antimicrobial activity. This peptide, consisting of 15 amino acids with + 3 net charges, was an effective antimicrobial agent against the on the Gram-positive strain, Staphylococcus aureus (MIC: $0.62{\mu}g/ml$). In addition, the hemolytic activity assay revealed that the peptide was not toxic to mouse and human erythrocytes up to $40{\mu}g/ml$. We also used circular dichroism spectroscopy to confirm that peptide in the presence of lipid has ${\alpha}-helical$ structures and later provide an overview of the relationship between each structure and antimicrobial activity. This peptide is a member of a new class of antimicrobial agents that could potentially overcome the problem of bacterial resistance caused by overuse of conventional antibiotics. Therefore, it could be used as a therapeutic or natural additive, particularly in the cosmetics industry.

Antibiotics produced by anaerobic fermentation of Streptococcus sp. An-21-1 isolated from domestic soil, Fermentation and purification of antibiotics from anaerobe (국내토양에서 분리한 혐기성 세균 Streptococcus sp. An-21-1 이 생성하는 항생물질 II. 항생물질을 생성하는 혐기성 세균의 발효 및 항생물질의 분리 정제)

  • Park, Seung-chun;Yun, Hyo-in;Oh, Tae-kwang
    • Korean Journal of Veterinary Research
    • /
    • v.33 no.1
    • /
    • pp.61-69
    • /
    • 1993
  • In order to search for new antibiotics from anaerobic bacteria, a large number of samples from domestic soil were collected and processed by apropriate methods. A potential strain, Streptococcus sp. An-21-1, was found to produce antimicrobial compounds. The Results were as follows; 1. During fermentation, the bacteria grew rapidly up to 20hr, thereafter entered the death phase. The optimal temperature and pH for the bacterial growth were $37^{\circ}C$ and pH 7.0, respectively. 2. Antibiotics were purified from culture broth by solvent extraction, silica gel column chromatography and Sepadex L.H 20 column. 3. Physicochemical properties of Ap-1 and Ap-2 were similar ; Their melting points were between $234-237^{\circ}C$. Color reactions of ninhydrin, 2,7-dichlorofluorescein, 4-dimethylaminobenzaldehyde, Dragendroffs reagent and 20% $H_2SO_4$, were positive. Therefore, we assumed that these antibiotics have amine group, immine group, alkaloid, and lipid components. These were stable to heat. UV spectrophotometry showed two peaks at 210 nm and 260 nm. From above results, we assumed these antibiotics are belong to the peptide antibiotic family.

  • PDF

Biophysical Studies Reveal Key Interactions between Papiliocin-Derived PapN and Lipopolysaccharide in Gram-Negative Bacteria

  • Durai, Prasannavenkatesh;Lee, Yeongjoon;Kim, Jieun;Jeon, Dasom;Kim, Yangmee
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.671-678
    • /
    • 2018
  • Papiliocin, isolated from the swallowtail butterfly (Papilio xuthus), is an antimicrobial peptide with high selectivity against gram-negative bacteria. We previously showed that the N-terminal helix of papiliocin (PapN) plays a key role in the antibacterial and anti-inflammatory activity of papiliocin. In this study, we measured the selectivity of PapN against multidrug-resistant gram-negative bacteria, as well as its anti-inflammatory activity. Interactions between Trp2 of PapN and lipopolysaccharide (LPS), which is a major component of the outer membrane of gram-negative bacteria, were studied using the Trp fluorescence blue shift and quenching in LPS micelles. Furthermore, using circular dichroism, we investigated the interactions between PapN and LPS, showing that LPS plays critical roles in peptide folding. Our results demonstrated that Trp2 in PapN was buried deep in the negatively charged LPS, and Trp2 induced the ${\alpha}$-helical structure of PapN. Importantly, docking studies determined that predominant electrostatic interactions of positively charged arginine residues in PapN with phosphate head groups of LPS were key factors for binding. Similarly, hydrophobic interactions by aromatic residues of PapN with fatty acid chains in LPS were also significant for binding. These results may facilitate the development of peptide antibiotics with anti-inflammatory activity.

Antimicrobial Peptide as a Novel Antibiotic for Multi-Drug Resistance "Super-bacteria" (다제내성 슈퍼박테리아에 대한 새로운 항생제인 항균 펩타이드)

  • Park, Seong-Cheol;Nah, Jae-Woon
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.429-432
    • /
    • 2012
  • According to the requirement of novel antimicrobial agents for the rapidly increasing emergence of multi-drug resistant pathogenic microbes, a number of researchers have found new antibiotics to overcome this resistance. Among them, antimicrobial peptides (AMPs) are host defense molecules found in a wide variety of invertebrate, plant, and animal species, and are promising to new antimicrobial candidates in pharmatherapeutic fields. Therefore, this review introduces the antimicrobial action of antimicrobial peptide and ongoing development as a pharmetherapeutic agent.

The ermKleader peptide alterations leading to differential efficiency of induction by erythromycin

  • Kim, Jeong-A;Min, Yu-Hong;Yun, Hee-Jeong;Lim, Jung-A;Lee, Sang-Won;Kim, ung-Hoon;Park, Eung-Chil
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.335.1-335.1
    • /
    • 2002
  • The ermK gene from Bacillus lichenformis encodes an inducible rANA methylase that confers resistance to the macrolide-lincosamide-streptograminB antibiotics. The ermKmANA leader sequence has a total length of 357 nucleotides and encodes a 14-amino acid leader peptide together with its ribosome binding site. The secondary structure of erm leader RNA and a leader peptide have been reported as the elements that control expression. (omitted)

  • PDF

Cloning of Inducible MLS Antibiotics Resistance Genes and their Expression Control Mechanism - ermC-4, a macrolide-lincosamide-streptogramin B resistance determinant on pMB4 from Staphylococcus aureus TR-1 (MLS계 항생물질 유도내성 유전자의 크로닝과 유전자의 발현조절 기전 - Staphylococus aureus TR-1균주의 프라스미드 pMB4에 존재하는 MLS 내성 유전자 ermC-4)

  • 김수환;최응칠;김병각;심미자
    • YAKHAK HOEJI
    • /
    • v.35 no.1
    • /
    • pp.22-29
    • /
    • 1991
  • pMB4 is a 2.4-kilobase plasmid of Staphylococcus aureus TR-1 that confers inducible resistance to the macrolide-lincosamide-streptogramin B(MLS) antibiotics. By subcloning studies, it was found that the MLS resistance determinant was located at 1.0Kb fragment between Sau3AI and TaqI sites. DNA sequence of the MLS resistant determinant, named ermC-4 was determined, and found to be highly homologous with that of ermC. Because the leader peptide sequence of ermC-4 was identical with that of ermC, the expression of the resistance gene is thought to be controlled by posttranscriptional attenuation in S. aureus TR-1.

  • PDF

A Study on Development of Protein Materials using Dead Flatfish from Fish Farms(2) -Industrial Process- (양식장 넙치 폐사어를 이용한 단백질 소재의 개발에 관한 연구(2) -산업화공정 연구-)

  • Kang, Keon-Hee;Lee, Min-Gyu;Kam, Sang-Kyu;Jeong, Kap-Seop
    • Journal of Environmental Science International
    • /
    • v.22 no.12
    • /
    • pp.1625-1631
    • /
    • 2013
  • In manufacturing of flatfish skin collagen peptide (FSCP) and flatfish protein hydrolysate (FPH) by reuse of dead flatfish from fish farm in Jeju island, the industrial process was optimized with the laboratory scale research and the on-field process. Segmented unit processes from raw material incoming to shipment were established to produce commercial product of FSCP and FPH. Total plate counts of FSCP were twenty five times of FPH, but food poisoning bacteria were not detected in two samples. FSCP and FPH were safe from heavy metal such as Pb(II), Cd(II) and Hg(II). The residual contents of antibiotics and disinfection matter in FSCP and FPH were not detected. The optimized process for mass production made the one-third of the running time and two times of the yield. From economic analysis, the production cost was estimated to 22,000 and 12,000 won/kg for FSCP and FPH, respectively. Therefore the product from the reuse of dead flatfish was expected to have a considerable competitive price and high added-value functional food material compared with other commercially available fish products.

Antimicrobial Activity of the Scolopendrasin V Peptide Identified from the Centipede Scolopendra subspinipes mutilans

  • Lee, Joon Ha;Kim, In-Woo;Kim, Mi-Ae;Ahn, Mi-Young;Yun, Eun-Young;Hwang, Jae Sam
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.43-48
    • /
    • 2017
  • In a previous study, we analyzed the transcriptome of Scolopendra subspinipes mutilans using next-generation sequencing technology and identified several antimicrobial peptide candidates. One of the peptides, scolopendrasin V, was selected based on the physicochemical properties of antimicrobial peptides using a bioinformatics strategy. In this study, we assessed the antimicrobial activities of scolopendrasin V using the radial diffusion assay and colony count assay. We also investigated the mode of action of scolopendrasin V using flow cytometry. We found that scolopendrasin V's mechanism of action involved binding to the surface of microorganisms via a specific interaction with lipopolysaccharides, lipoteichoic acid, and peptidoglycans, which are components of the bacterial membrane. These results provide a basis for developing peptide antibiotics.

Effect of Antibiotics upon the Antibacterial Activity of Platelet Microbicidal Protein against Streptococcus rattus BHT

  • Kim, Jae-Wook;Choe, Son-Jin;Lee, Si-Young
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • Thrombin-induced platelet microbicidal protein (tPMP) is a small cationic peptide that exerts potent in vitro microbicidal activity against a broad spectrum of human pathogens, including Staphylococcus aureus and Streptococcus rattus BHT. Earlier evidence has suggested that tPMP targets and disrupts the bacterial membrane. However, it is not yet clear whether membrane disruption itself is sufficient to kill the bacteria or whether subsequent, presumably intracellular, events are also involved in this process. In this study, we investigated the microbicidal activity of rabbit tPMP toward S. rattus BHT cells in the presence or absence of a pretreatment with antibiotics that differ in their mechanisms of action. The streptocidal effects of tPMP on control cells (no antibiotic pretreatment) were rapid and concentration-dependent. Pretreatment of S. rattus BHT cells with either penicillin or amoxicillin (inhibitors of bacterial cell wall synthesis) significantly enhanced the anti-S. rattus BHT effects of tPMP compared with the effects against the respective control cells over most tPMP concentration ranges tested. On the other hand, pretreatment of S. rattus BHT cells with tetracycline or doxycycline (30S ribosomal subunit inhibitors) significantly decreased the streptocidal effects of tPMP over a wide peptide concentration range. Furthermore, pretreatment with rifampin (an inhibitor of DNA-dependent RNA polymerase) essentially blocked the killing of S. rattus BHT by tPMP at most concentrations compared with the respective control cells. These results suggest that tPMP exerts anti-S. rattus BHT activity through mechanisms involving both the cell membrane and intracellular targets.