• 제목/요약/키워드: pentose

검색결과 92건 처리시간 0.025초

Dynamic Gene Expression Profiling of Escherichia coli in Carbon Source Transition from Glucose to Acetate

  • Oh Min-Kyu;Cha Mee-Jeong;Lee Sun-Gu;Rohlin Lars;Liao James C.
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권4호
    • /
    • pp.543-549
    • /
    • 2006
  • DNA microarray was used to study the transcription profiling of Escherichia coli adapting to acetate as a sole carbon source. Bacteria grown in glucose minimal media were used as a reference. The dynamic expression levels of 3,497 genes were monitored at seven time points during this adaptation. Among the central metabolic genes, the glycolytic and glucose phosphotransferase genes were repressed as the bacteria entered stationary phase, whereas the glyoxylate pathway, TCA cycle, and gluconeogenic genes were induced. Distinct induction or repression patterns were recognized among different pathway genes. For example, the repression of glycolytic genes and the induction of gluconeogenic ones started immediately after glucose was depleted. On the other hand, the regulation of the pentose phosphate pathway genes and glyoxylate genes gradually responded to the glucose depletion or was more related to growth in acetate. When the whole genome was considered, many of the CRP, FadR, and Cra regulons were immediately responsive to the glucose depletion, whereas the $\sigma^s$, Lrp, and IHF regulons were gradually responsive to the glucose depletion. The expression profiling also provided differential regulations between isoenzymes; for example, malic enzymes A (sfcA) and B (maeB). The expression profiles of three genes were confirmed with RT-PCR.

Succinic Acid Production by Continuous Fermentation Process Using Mannheimia succiniciproducens LPK7

  • Oh, In-Jae;Lee, Hye-Won;Park, Chul-Hwan;Lee, Sang-Yup;Lee, Jin-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제18권5호
    • /
    • pp.908-912
    • /
    • 2008
  • To achieve a higher succinic acid productivity and evaluate the industrial applicability, this study used Mannheimia succiniciproducens LPK7 (knock-out: ldhA, pflB, pta-ackA), which was recently designed to enhance the productivity of succinic acid and reduce by-product secretion. Anaerobic continuous fermentation of Mannheimia succiniciproducens LPK7 was carried out at different glucose feed concentrations and dilution rates. After extensive fermentation experiments, a succinic acid yield and productivity of 0.38 mol/mol and 1.77 g/l/h, respectively, were achieved with a glucose feed concentration of 18.0 g/l and $0.2\;h^{-1}$ dilution rate. A similar amount of succinic acid production was also produced in batch culture experiments. Therefore, these optimal conditions can be industrially applied for the continuous production of succinic acid. To examine the quantitative balance of the metabolism, a flux distribution analysis was also performed using the metabolic network model of glycolysis and the pentose phosphate pathway.

Effect of Exogenous Proline on Metabolic Response of Tetragenococcus halophilus under Salt Stress

  • He, Guiqiang;Wu, Chongde;Huang, Jun;Zhou, Rongqing
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권9호
    • /
    • pp.1681-1691
    • /
    • 2017
  • This study investigated the effect of proline addition on the salt tolerance of Tetragenococcus halophilus. Salt stress led to the accumulation of intracellular proline in T. halophilus. When 0.5 g/l proline was added to hyperhaline medium, the biomass increased 34.6% (12% NaCl) and 27.7% (18% NaCl) compared with the control (without proline addition), respectively. A metabolomic approach was employed to reveal the cellular metabolic responses and protective mechanisms of proline upon salt stress. The results showed that both the cellular membrane fatty acid composition and metabolite profiling responded by increasing unsaturated and cyclopropane fatty acid proportions, as well as accumulating some specific intracellular metabolites (environmental stress protector). Higher contents of intermediates involved in glycolysis, the tricarboxylic acid cycle, and the pentose phosphate pathway were observed in the cells supplemented with proline. In addition, addition of proline resulted in increased concentrations of many organic osmolytes, including glutamate, alanine, citrulline, N-acetyl-tryptophan, and mannitol, which may be beneficial for osmotic homeostasis. Taken together, results in this study suggested that proline plays a protective role in improving the salt tolerance of T. halophilus by regulating the related metabolic pathways.

Crystal Structures of 6-Phosphogluconate Dehydrogenase from Corynebacterium glutamicum

  • Hyeonjeong Yu;Jiyeon Hong;Jihye Seok;Young-Bae Seu;Il-Kwon Kim;Kyung-Jin Kim
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권10호
    • /
    • pp.1361-1369
    • /
    • 2023
  • Corynebacterium glutamicum (C. glutamicum) has been considered a very important and meaningful industrial microorganism for the production of amino acids worldwide. To produce amino acids, cells require nicotinamide adenine dinucleotide phosphate (NADPH), which is a biological reducing agent. The pentose phosphate pathway (PPP) can supply NADPH in cells via the 6-phosphogluconate dehydrogenase (6PGD) enzyme, which is an oxidoreductase that converts 6-phosphogluconate (6PG) to ribulose 5-phosphate (Ru5P), to produce NADPH. In this study, we identified the crystal structure of 6PGD_apo and 6PGD_NADP from C. glutamicum ATCC 13032 (Cg6PGD) and reported our biological research based on this structure. We identified the substrate binding site and co-factor binding site of Cg6PGD, which are crucial for understanding this enzyme. Based on the findings of our research, Cg6PGD is expected to be used as a NADPH resource in the food industry and as a drug target in the pharmaceutical industry.

Intracellular Flux Prediction of Recombinant Escherichia coli Producing Gamma-Aminobutyric Acid

  • Sung Han Bae;Myung Sub Sim;Ki Jun Jeong;Dan He;Inchan Kwon;Tae Wan Kim;Hyun Uk Kim;Jong-il Choi
    • Journal of Microbiology and Biotechnology
    • /
    • 제34권4호
    • /
    • pp.978-984
    • /
    • 2024
  • Genome-scale metabolic model (GEM) can be used to simulate cellular metabolic phenotypes under various environmental or genetic conditions. This study utilized the GEM to observe the internal metabolic fluxes of recombinant Escherichia coli producing gamma-aminobutyric acid (GABA). Recombinant E. coli was cultivated in a fermenter under three conditions: pH 7, pH 5, and additional succinic acids. External fluxes were calculated from cultivation results, and internal fluxes were calculated through flux optimization. Based on the internal flux analysis, glycolysis and pentose phosphate pathways were repressed under cultivation at pH 5, even though glutamate dehydrogenase increased GABA production. Notably, this repression was halted by adding succinic acid. Furthermore, proper sucA repression is a promising target for developing strains more capable of producing GABA.

Metabolic Flux Distribution for $\gamma$-Linolenic Acid Synthetic Pathways in Spirulina platensis

  • Meechai Asawin;Pongakarakun Siriluk;Deshnium Patcharaporn;Cheevadhanarak Supapon;Bhumiratana Sakarindr
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권6호
    • /
    • pp.506-513
    • /
    • 2004
  • Spirulina produces $\gamma$-linolenic acid (GLA), an important pharmaceutical substance, in a relatively low level compared with fungi and plants, prompting more research to improve its GLA yield. In this study, metabolic flux analysis was applied to determine the cellular metabolic flux distributions in the GLA synthetic pathways of two Spiru/ina strains, wild type BP and a high­GLA producing mutant Z19/2. Simplified pathways involving the GLA synthesis of S. platensis formulated comprise of photosynthesis, gluconeogenesis, the pentose phosphate pathway, the anaplerotic pathway, the tricarboxylic cycle, the GLA synthesis pathway, and the biomass syn­thesis pathway. A stoichiometric model reflecting these pathways contains 17 intermediates and 22 reactions. Three fluxes - the bicarbonate (C-source) uptake rate, the specific growth rate, and the GLA synthesis rate - were measured and the remaining fluxes were calculated using lin­ear optimization. The calculation showed that the flux through the reaction converting acetyl­CoA into malonyl-CoA in the mutant strain was nearly three times higher than that in the wild­type strain. This finding implies that this reaction is rate controlling. This suggestion was sup­ported by experiments, in which the stimulating factors for this reaction $(NADPH\;and\;MgCl_{2})$ were added into the culture medium, resulting in an increased GLA-synthesis rate in the wild type strain.

Glucose and Its Role in Generating Reactive Oxygen Species Required for Mouse Sperm Fertilizing Ability

  • Lin, S.C.;Chen, M.C.;Huang, A.J.;Salem, B.;Li, K.C.;Chou, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권6호
    • /
    • pp.748-756
    • /
    • 2000
  • Effects of xanthine (X), xanthine oxidase (XO), and catalase (C), $H_2O_2$, and carbohydrates on sperm capacitation, acrosome reaction, and fertilizing ability in vitro were examined. Glucose alone, but not fructose, supported the maximum rate of sperm capacitation and acrosome reaction. However, in the combination of X, XO, and C (XXOC) or $H_2O_2$, fructose alone also supported maximum capacitation, acrosome reaction, and fertilization. Either insufficient or excessive amounts of $H_2O_2$ decreased sperm capacitation and the acrosome reaction. In order to understand how glucose generates $H_2O_2$ or other reactive oxygen species in sperm cells, 6-aminonicotinamide, an inhibitor of the pentose-phosphate pathway (PPP), and apocynin, an inhibitor of NADPH oxidase, were added to sperm suspensions in glucose-containing medium. Results appeared that sperm capacitation, acrosome reaction, and fertilization were consequently inhibited by either one of these compounds. These inhibitory effects were nullified by addition of XXOC. These results support the hypothesis that glucose, in addition to being a substrate for glycolysis, facilitates sperm capacitation and the acrosome reaction by generating reactive oxygen species through G-6-P dehydrogenase and NADPH oxidase.

소나무 재생버섯(Fomitopsis pinicola Jeseng) 다당류의 추출 특성 (Extraction Characteristics of Polysaccharide from Fomitopsis pinicola Jeseng Mushroom)

  • 장경호;신진기;이명예;이상일;김정숙;오승희;김순동
    • 동아시아식생활학회지
    • /
    • 제15권1호
    • /
    • pp.100-105
    • /
    • 2005
  • This study was conducted to investigate the extraction characteristics of the polysaccharide from Jeseng mushroom (Fomitopsis pinicola Jeseng). Yields of the polysaccharide extracted from powdered mushroom by autoclaving(120, 30 min) with water at different pH and salt concentration were 8.2~9.2% in pH 5~11, 4.7~5.5% in 1~5% salt solution, respectively. The yield by the 0.05~1.0 N KOH-extraction was ranged 3.45~13.20%, while that by HAS-extraction(homogenizing after KOH swelling) using 1~2.5 N KOH 73.6~78.4%. Content of carbohydrate, protein, lipid and ash of the crude polysaccharide extracted from fruits body and its cultured mycelium by method of water extraction, KOH extraction(0.005~1N) and HAS-extraction were ranged 86.5~92.6%, 2.3~13.1%, 0.1~4.2% and 0.1~1.7%, respectively. The polysaccharide were composed of 62.0~77.8 g/g of pentose, 138.0~187.8 g/g of hexose and 21.2~117.3 mg/g of protein. From these results, the polysaccharide extracted was supposed to be a protein-bound polysaccharide.

  • PDF

고정화 Pichia stipitis 를 이용한 글루코오스/자일로오스 혼합당으로부터 에탄올 생산 (Ethanol Production with Glucose/Xylose Mixture by Immobilized Pichia stipitis)

  • 신현석;강성우;이상준;장은지;서영웅;김승욱
    • KSBB Journal
    • /
    • 제25권4호
    • /
    • pp.351-356
    • /
    • 2010
  • 리르노셀룰로오스로부터 생산된 글루코오스와 자일로 오스의 혼합당을 동시에 발효하여 에탄올 생산을 증가시키며, 또한 에탄올 생산에서의 세포고정화의 영향과 ICR (immobilized cell reactor)을 이용한 혼합당에서의 에탄올 연속생산을 수행하였다. 고정화 P. stipitis를 이용한 플라스크에서 에탄올을 생산에 대한 혼합당과 질소원의 영향으로부터 5% 혼합당 (글루코오스/자일로오스 = 3:1)과 1% 질소원이 최적으로 타나났으며, 이때 생산된 에탄올 농도는 약 19-20 g/L이었다. 고정화된 P. stipitis을 이용하여 반복적 유가식배양 (repeated fed-batch)으로 에탄올을 생산하였을 때는 모든 당 농도에서 글루코오스는 빠르게 소비되었지만, 혼합당의 농도가 높아질수록 자일로오스의 소비속도는 점차적으로 감소하였다. 즉 혼합당 농도가 증가하면서 더불어 당 소비속도는 감소하였다. 또한 ICR에서 1% 혼합당을 연속적으로 공급하면서 에탄올을 안정적으로 생산하여, 에탄올 농도는 5.6 g/L이었고 에탄올 생산 속도는 0.13 g/$L{\cdot}h$이었다.

Potential involvement of Drosophila flightless-1 in carbohydrate metabolism

  • Park, Jung-Eun;Jang, Jinho;Lee, Eun Ji;Kim, Su Jung;Yoo, Hyun Ju;Lee, Semin;Kang, Min-Ji
    • BMB Reports
    • /
    • 제51권9호
    • /
    • pp.462-467
    • /
    • 2018
  • A previous study of ours indicated that Drosophila flightless-1 controls lipid metabolism, and that there is an accumulation of triglycerides in flightless-1 (fliI)-mutant flies, where this mutation triggers metabolic stress and an obesity phenotype. Here, with the aim of characterizing the function of FliI in metabolism, we analyzed the levels of gene expression and metabolites in fliI-mutant flies. The levels of enzymes related to glycolysis, lipogenesis, and the pentose phosphate pathway increased in fliI mutants; this result is consistent with the levels of metabolites corresponding to a metabolic pathway. Moreover, high-throughput RNA sequencing revealed that Drosophila FliI regulates the expression of genes related to biological processes such as chromosome organization, carbohydrate metabolism, and immune reactions. These results showed that Drosophila FliI regulates the expression of metabolic genes, and that dysregulation of the transcription controlled by FliI gives rise to metabolic stress and problems in the development and physiology of Drosophila.