• Title/Summary/Keyword: pentanal and hexanal

Search Result 27, Processing Time 0.028 seconds

Studies on Stability of Yoon-Je for Herb-Acupunction (I) - Measurement of Rancidity by Gas Chromatographic Analysis - (종자추출액의 안정성에 관한 연구 I - 가스크로마토그라피를 이용한 산패도 측정 -)

  • Ko, Byoung-Seob;Lee, Han-Goo;Kim, Chung-Sook
    • Korean Journal of Oriental Medicine
    • /
    • v.1 no.1
    • /
    • pp.541-553
    • /
    • 1995
  • In order to study the stability of herbal oil(Yoo-Je), the Yoo-Je from walnut and safflower measured their rancidity by gas chromatographic analysis. The use of specificity of column for estimating the oxidative deterioration of Yoo-Je was attempted. These results suggested the possible implication of pentanal and hexanal as an stability index for rancidity evaluation of Yoo-Je.

  • PDF

Volatile Changes in Beverages and Encapsulated Powders Containing an Artemisia Extract during Production and Storage (쑥 추출물 함유 음료와 미세캡슐의 제조 및 저장 중 휘발성분 변화)

  • Park, Min-Hee;Kim, Mi-Ja;Cho, Wan-Il;Chang, Pahn-Shick;Lee, Jae-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.3
    • /
    • pp.271-276
    • /
    • 2011
  • Volatile profiles of beverages and encapsulated powders containing Artemisia princeps Pampan extracts were analyzed by solid-phase microextraction-gas chromatography/mass spectrometry during production and storage. Beverages containing 0.32 and 0.64% extracts were stored at room temperature for 8 weeks and $60^{\circ}C$ for 8 days, respectively. Encapsulated particles were stored at room temperature and $60^{\circ}C$ for 8 days. Total volatiles in beverages decreased significantly during storage, irrespective of storage condition (p<0.05). Terpenoids, including cymene, thujone, and ${\beta}$-myrcene, were major volatiles in beverages, and some volatiles including ethylfuran, vinylfuran, and 2-fufural increased in 60oC samples only. Total volatiles in microcapsules at room temperature were not significant different for 8 days (p>0.05), whereas those at $60^{\circ}C$ increased by 16.5 times. Limonene was the most detected volatile in microcapsules, and aldehydes such as hexanal, pentanal, and octanal, and furans such as 2-butylfuran and 2-pentylfuran increased in the $60^{\circ}C$ samples, which may have originated from oxidized lipids used in the microcapsules.

Flavor Compounds of Domestic Meju and Doenjang (재래식 메주 및 된장의 향기성분)

  • Kim, Gyeong-Eup;Kim, Mi-Hye;Choi, Byeong-Dae;Kim, Tae-Soo;Lee, Jong-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.5
    • /
    • pp.557-565
    • /
    • 1992
  • Volatile components of domestic Meju and Doenjang were extracted by simultaneous steam distillation extraction, and analyzed by GC-MS. Sixty-four kinds of compounds were identified from neutral fraction. The contents of pentanal, hexanal and 1-octen-3-ol were high in cooked soybean while those of 3-methylbutanal and 1-butanol were high in Meju. In the case of Doenjang, so many compounds including acetic acid, ethylester were identified which was not appeared in Meju. The main compounds in Meju were 3-methyl-1-butanol, 2-furancarboxyaldehyde, 1-octen-3-ol, benzeneacetaldehyde, methyloctadecadienoate and methyloctadecenoate. Of the eleven compounds identified from basic fraction, the contents of 2,6-dime-thylpyrazine, trimethylpyrazine and tetramethylpyrazine were high in Meju and Doenjang. Nine kinds of compounds were identified from phenolic fraction and appeared that 4-vinylphenol and p-ethylguaiacol were major compounds in Meju and Doenjang. Fifteen kinds of volatile compounds were contained in acidic fraction. Only four acidic compounds were identified in cooked soybean and Meju, but in Doenjang ten compounds were identified which did not appeared in other samples. Among them pentadecanoic acid was major compound.

  • PDF

Effects of Alkali Treatment of Soybean on the Qualty of Soybean Milk (대두(大豆)의 Alkali 처리가 두유의 품질에 미치는 영향)

  • Oh, Joon-Sei;Lee, Gyu-Hee;Lee, Won-Yong;Lee, Ka-Sun;Oh, Man-Jin
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.2
    • /
    • pp.85-94
    • /
    • 1988
  • This experiment was carried out to obtain the basic data for removal the astringency and off-flavor in soybean milk, by means of soaking of soybean in NaOH and $NaHCO_3$ solutions. The changes of phenolic compounds in soybean during soaking were investigated with HPLC and also the changes of flavor and sensority of soybean milk, prepared from soaked soybean were studied. Phenolic compounds of soybean were identified as chlorogenic, p-hydroxybenzoic, p-coumaric, ferulic and gentisic acid and, chlorogenic acid content was greater than the others. The chlorogenic acid of soybean was mainly neutral type and the other compounds were almost acidic type. Up to 85% of the chlorogenic acid was removed by soaking of soybean in 0.1% of NaOH solution for 8 hrs. Phenolic compounds of soybean was almost removed by soaking in 0.1% of NaOH solution at $90^{\circ}C$ for 1 hr. Chemical composition of soybean milks prepared from soaking of soybean in water, 0.1% NaOH and 0.5% $NaHCO_3$ solution were similar. Hexanol content of beany flavor in soybean milk was increased by soaking of soybean in NaOH solution, where as hexanal, propanal, pentanal contents were removed up to 60%. Color of soybean prepared from soaking of soybean in NaOH solution at high temperature were deep yellow but were high whiteness in soybean milk prepared from soaking of soybean in water at low temperature. Sensority of soybean milk prepared from soaking of soybean in 0.1% of NaOH solution at $90^{\circ}C$ for 1 hr was more favorable than the others.

  • PDF

Rancidity Analysis of Rapeseed Oil under Different Storage Conditions Using Mass Spectrometry-based Electronic Nose (질량분석기 기반-전자코를 이용한 저장중 유채유의 산패 분석)

  • Hong, Eun-Jeung;Lim, Chae-Lan;Son, Hee-Jin;Choi, Jin-Young;Noh, Bong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.699-704
    • /
    • 2010
  • Rapeseed oil was stored under different conditions such as in the dark, with UV treatment, and with prooxidantscytochrome C and copper ion. The rapeseed oils stored at different temperatures were analyzed by a mass spectrometrybased electronic nose and discriminant function analysis (DFA). Volatile components in the rapeseed oil increased with storage time, and the discriminant function first score (DF1) moved from a positive position to a negative position as storage time increased. Changes in DF1 were higher under UV treatment than under the dark condition (DF1: $r^2$=0.9481, F=307.03). The different DF1 values (F1) under the dark condition were 0.099, 0.187, and 0.278 as storage temperature increased. The different values under UV treatment were 0.554, 0.588, and 0.542, as storage temperature increased from 4 to $26^{\circ}C$. As concentrations of prooxidants copper ion and cytochrome C increased, amounts of volatile components also increased. These were confirmed by DFA. Furthermore, changes in responses at each ion fragment agreed with reported results for GC/MS, which formed after rancidity of the oil, including pentane, pentanal, 1-pentanol, hexanal, n-octane, 2-hexenal, heptanal, 2-heptenal, decane, 2-octenal, undecane, and dodecane.

Changes of Volatile Organic Compounds of Rhus verniciflua S. Bark by Fermentation (발효에 의한 옻나무 수피의 휘발성 유기성분 변화)

  • Ryu, Keun-Young;Seo, Hye-Young;Han, Kyu-Jai;Jeong, Yang-Mo;Kim, Kyong-Su;Hong, Kwang-Joon;You, Sang-Ha
    • Food Science and Preservation
    • /
    • v.14 no.3
    • /
    • pp.308-314
    • /
    • 2007
  • To investigate effects of fermentation on volatile components, we analyzed volatile organic compounds of raw and fermented Rhus verniciflua S. bark. A 50%(w/v) sugar solution was used for fermentation. Volatile organic compounds of raw and fermented Rhus verniciflua S. were extracted by the simultaneous steam distillation and extraction(SDE) method, with a mixture of n-pentane and diethylether(1:1, v/v) and analyzed by gas chromatograph-mass spectrometer. A total of 51 and 27 volatile organic compounds were detected in raw and fermented samples, respectively, and were mainly alcohols. Compounds such as ethyl acetate, 2-methyl-3-buten-2-ol, 3-methylbutanal, 1-octen-3-o1, 3-methyl-2-butanone, hexanal and pentanal were detected as the primary compounds in the raw sample. The fermented sample showed sour different volatile compounds, such as ethanol, ethyl acetate, ethyl lactate and 3-methylbutanol. Thus, a number of volatile organic compounds were synthesized after fermentation of Rhus verniciflua S. bark.

Pattern Recognition Analysis for Volatile Compounds of the Whole, Skim, UHT-, HTST-, and LTLT-Milk under LED Irradiations (여러 가지 LED를 처리한 전지유, 무지방 우유, LTLT, UHT, HTST 처리 우유의 휘발성분 패턴 분석)

  • Kim, Ki-Hwa;Hong, Eun-Jeung;Park, Sue-Jee;Kang, Jee-Won;Noh, Bong-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.4
    • /
    • pp.596-602
    • /
    • 2011
  • The objective of this study was to analyze the pattern recognition of volatile compounds from different types of milk under LED (Light Emitting Dioxide) irradiation for 6 d. Yellow, red, blue, dark, and fluorescent light were produced using LED equipment. A mass spectrometry-based electronic nose and DFA (discriminant function analysis) were used to determine the change in volatiles from different types of milk under LED irradiation. As the LED exposure time was increased, DF1 of whole milk changed considerably under blue light, while that of skim milk changed significantly under red and yellow light irradiation. Among the types of milk tested, the most light-induced oxidation sample was LTLT milk under blue light. The volatile compounds that were shown to increase due to LED treatment in the electronic nose analysis, which was based on MS, were mainly acetaldehyde, propanal, pentanal, hexanal, heptanal, nonanal, 3-methyl butanal, 2-methyl propanal, 2-butanone, 2-pentanone, 2-hexanone, and 2-heptanaone and 2-nonanone.

Flavor Components in the Filefish Processing (말쥐치 가공중 향기성분에 관하여)

  • LEE Jong-Ho;CHOI Byeong-Dae;LEE Kang-Ho;LEE Kun-Tae;KIM Tae-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.22 no.3
    • /
    • pp.121-128
    • /
    • 1989
  • Volatile compounds were collected by simultaneous distillation extraction and carbon dioxide method, and analyzed by GC and GC-MS. The neutral fraction obtained from the whole steam volatile concentrate 55 kinds of components, phenolic fraction had 4 kinds of components, basic fraction had 13 kinds of components and 10 kinds of components were in acidic fraction. Alcohols, propanols, butanols, octanols, dodecanols etc. and aldehydes, pentanals, hexanal, 2-methyl-1-propanal, heptenal etc. were highly increased after boiled and roasted. And these compounds were contributed to formation of filefish flavor. The molecular ion peak of phenolic fraction was generally appeared in the range 100 to about 160. From the basic fraction, 2-methylpyrazine, 2,5-dimethylpyrazine, 2-ethyl-3,5-di-methylpyrazine and 2-methylpyridine were identified. The contents of basic compounds and furans obtained from the neutral fraction were increased at the higher heating temperature. The flavor of acidic fraction was influenced by the low molecular as isovaleric and valeric acid.

  • PDF

Effect of Different Cations on Pidan Composition and Flavor in Comparison to the Fresh Duck Egg

  • Ganasen, Palanivel;Benjakul, Soottawat;Hideki, Kishimura
    • Food Science of Animal Resources
    • /
    • v.33 no.2
    • /
    • pp.214-220
    • /
    • 2013
  • The effects of different cations on its composition and flavor characteristics of pidan white and yolk produced with duck egg in comparison to its fresh egg were investigated. Mineral content such as calcium, magnesium, sodium and potassium were significantly increased in pidan yolk irrespective of its cations in pickle solution in comparison to the fresh yolk (P<0.05). It confirmed the migration of minerals from the pickling solution to the egg. However, calcium and magnesium was found lower in 0.2% $PbO_2$ treated pidan. Less pidan flavor compounds were generated in pidan white produced with the aid of 0.2% $PbO_2$. It confirmed that binding of lead prevent the maillard reaction in the pidan treated with $PbO_2$. Benzaldehyde, ketones, alcohol and acid found in the pidan white treated with 0.2% $ZnCl_2$ reveals that volatiles are generated most likely from maillard reaction. However, pidan yolk of both 0.2% $PbO_2$ and 0.2% $ZnCl_2$ showed higher generation of volatiles more likely from yolk lipids. Butanal, pentanal, hexanal, and heptanal are of those aldehydes found in 0.2% $ZnCl_2$ treated pidan yolk whereas hexanal is the only aldehyde detected in 0.2% $PbO_2$ treated pidan yolk. Thus, cations in the pickling solution affect the flavor characteristics of pidan white and yolk.

Volatile Components of Flower and Seed of Safflower (홍화꽃 및 홍화씨의 휘발성성분)

  • Choi, Sung-Hee;Im, Sung-Im;Jang, Eun-Young;Cho, Young-Su
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.196-201
    • /
    • 2004
  • Volatile components in flower and seed of safflower were identified. Volatile flavor compounds of safflower (Carthamus tinctorius L.) was extracted by simultaneous steam distillation and extraction method using Likens and Nickerson's extraction apparatus. Concentrated extract was analyzed and identified by gas chromatography and GC-mass spectrometry. Main volatile components in flower were terpene compounds, including p-cymene, limonene, ${\alpha}-phellandrene$, ${\gamma}-terpinene$, camphor, 4-terpineol, selinene, ${\beta}-caryophyllene$, torreyol, ${\beta}-eudesmol$, and 10 acids including 3-methylbutanoic acid, 2-methylbutanoic acid, and acids of $C_{2},\;C_{5}-C_{11}$. Main volatile components in seed and safflower were 20 aldehydes including hexanal (7.17%), (E)-2-heptenal (1.10%), (E,Z)-2,4-decadienal and (E,E)-2,4-decadienal.