• Title/Summary/Keyword: penalty technique

Search Result 117, Processing Time 0.019 seconds

컴퓨터 시스템 설치를 위한 위치-할본-규모결정 모형

  • Choe, Su-In
    • ETRI Journal
    • /
    • v.5 no.3
    • /
    • pp.3-8
    • /
    • 1983
  • In the area of computer network planning, a location-allocation-size problem is involved. Since multi-facility location-allocation-size problems are very complex in formulating a mathematical model, it is a usual practise to adopt alternative approaches, which give no optimal results, instead of the optimal solution by mathematical approach. In this article, however, an attempt is made to formulate a mathematical model for the decision making problem of computer network design.

  • PDF

Optimum Design of Composite Laminated Beam Using GA (유전알고리즘을 이용한 복합 적층보의 최적설계)

  • 구봉근;한상훈;이상근
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.349-358
    • /
    • 1997
  • The present paper describes an investigation into the application of the genetic algorithm (GA) in the optimum design of composite laminated structure. Stochastic processes generate an initial population of designs and then apply principles of natural selection/survival of the fittest to improve the designs. The five test functions are used to verify the robustness and reliability of the GA, and as a numerical example, minimum weight of a cantilever composite laminated beam with a mix of continuous, integer and discrete design variables is obtained by using the GA with exterior penalty function method. The design problem has constraints on strength, displacements, and natural frequencies, and is formulated to a multidimensional nonlinear form. From the results, it is found that the GA search technique is very effective to find the good optimum solution as well as has higher robustness.

  • PDF

The SIMP-SRV Method for Stiffness Topology Optimization of Continuum Structures

  • Zhou, Xiangyang;Chen, Liping;Huang, Zhengdong
    • International Journal of CAD/CAM
    • /
    • v.7 no.1
    • /
    • pp.41-49
    • /
    • 2007
  • In density-based topology optimization, 0/1 solutions are sought. Discrete topological problems are often relaxed with continuous design variables so that they can be solved using continuous mathematical programming. Although the relaxed methods are practical, grey areas appear in the optimum topologies. SIMP (Solid Isotropic Microstructures with Penalization) employs penalty schemes to suppress the intermediate densities. SRV (the Sum of the Reciprocal Variables) drives the solution to a 0/1 layout with the SRV constraint. However, both methods cannot effectively remove all the grey areas. SRV has some numerical aspects. In this work, a new scheme SIMP-SRV is proposed by combining SIMP and SRV approaches, where SIMP is employed to generate an intermediate solution to initialize the design variables and SRV is then adopted to produce the final design. The new method turned out to be very effective in conjunction with the method of moving asymptotes (MMA) when using for the stiffness topology optimization of continuum structures for minimum compliance. The numerical examples show that the hybrid technique can effectively remove all grey areas and generate stiffer optimal designs characterized with a sharper boundary in contrast to SIMP and SRV.

Non-rigid Image Registration using Constrained Optimization (Constrained 최적화 기법을 이용한 Non-rigid 영상 등록)

  • Kim Jeong tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10C
    • /
    • pp.1402-1413
    • /
    • 2004
  • In non-rigid image registration, the Jacobian determinant of the estimated deformation should be positive everywhere since physical deformations are always invertible. We propose a constrained optimization technique at ensures the positiveness of Jacobian determinant for cubic B-spline based deformation. We derived sufficient conditions for positive Jacobian determinant by bounding the differences of consecutive coefficients. The parameter set that satisfies the conditions is convex; it is the intersection of simple half spaces. We solve the optimization problem using a gradient projection method with Dykstra's cyclic projection algorithm. Analytical results, simulations and experimental results with inhale/exhale CT images with comparison to other methods are presented.

Free vibration analysis of power-law and sigmoidal sandwich FG plates using refined zigzag theory

  • Aman Garg;Simmi Gupta;Hanuman D. Chalak;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi;Li Li;A.M. Zenkour
    • Advances in materials Research
    • /
    • v.12 no.1
    • /
    • pp.43-65
    • /
    • 2023
  • Free vibration analysis of power law and sigmoidal sandwich plates made up of functionally graded materials (FGMs) has been carried out using finite element based higher-order zigzag theory. The present model satisfies all-important conditions such as transverse shear stress-free conditions at the plate's top and bottom surface along with continuity condition for transverse stresses at the interface. A Nine-noded C0 finite element having eleven degrees of freedom per node is used during the study. The present model is free from the requirement of any penalty function or post-processing technique and hence is computationally efficient. The present model's effectiveness is demonstrated by comparing the present results with available results in the literature. Several new results have been proposed in the present work, which will serve as a benchmark for future works. It has been observed that the material variation law, power-law exponent, skew angle, and boundary condition of the plate widely determines the free vibration behavior of sandwich functionally graded (FG) plate.

On the use of the Lagrange Multiplier Technique for the unilateral local buckling of point-restrained plates, with application to side-plated concrete beams in structural retrofit

  • Hedayati, P.;Azhari, M.;Shahidi, A.R.;Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.6
    • /
    • pp.673-685
    • /
    • 2007
  • Reinforced concrete beams can be strengthened in a structural retrofit process by attaching steel plates to their sides by bolting. Whilst bolting produces a confident degree of shear connection under conditions of either static or seismic overload, the plates are susceptible to local buckling. The aim of this paper is to investigate the local buckling of unilaterally-restrained plates with point supports in a generic fashion, but with particular emphasis on the provision of the restraints by bolts, and on the geometric configuration of these bolts on the buckling loads. A numerical procedure, which is based on the Rayleigh-Ritz method in conjunction with the technique of Lagrange multipliers, is developed to study the unilateral local buckling of rectangular plates bolted to the concrete with various arrangements of the pattern of bolting. A sufficient number of separable polynomials are used to define the flexural buckling displacements, while the restraint condition is modelled as a tensionless foundation using a penalty function approach to this form of mathematical contact problem. The additional constraint provided by the bolts is also modelled using Lagrange multipliers, providing an efficacious method of numerical analysis. Local buckling coefficients are determined for a range of bolting configurations, and these are compared with those developed elsewhere with simplifying assumptions. The interaction of the actions in bolted plates during buckling is also considered.

A Study on Polynomial Neural Networks for Stabilized Deep Networks Structure (안정화된 딥 네트워크 구조를 위한 다항식 신경회로망의 연구)

  • Jeon, Pil-Han;Kim, Eun-Hu;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1772-1781
    • /
    • 2017
  • In this study, the design methodology for alleviating the overfitting problem of Polynomial Neural Networks(PNN) is realized with the aid of two kinds techniques such as L2 regularization and Sum of Squared Coefficients (SSC). The PNN is widely used as a kind of mathematical modeling methods such as the identification of linear system by input/output data and the regression analysis modeling method for prediction problem. PNN is an algorithm that obtains preferred network structure by generating consecutive layers as well as nodes by using a multivariate polynomial subexpression. It has much fewer nodes and more flexible adaptability than existing neural network algorithms. However, such algorithms lead to overfitting problems due to noise sensitivity as well as excessive trainning while generation of successive network layers. To alleviate such overfitting problem and also effectively design its ensuing deep network structure, two techniques are introduced. That is we use the two techniques of both SSC(Sum of Squared Coefficients) and $L_2$ regularization for consecutive generation of each layer's nodes as well as each layer in order to construct the deep PNN structure. The technique of $L_2$ regularization is used for the minimum coefficient estimation by adding penalty term to cost function. $L_2$ regularization is a kind of representative methods of reducing the influence of noise by flattening the solution space and also lessening coefficient size. The technique for the SSC is implemented for the minimization of Sum of Squared Coefficients of polynomial instead of using the square of errors. In the sequel, the overfitting problem of the deep PNN structure is stabilized by the proposed method. This study leads to the possibility of deep network structure design as well as big data processing and also the superiority of the network performance through experiments is shown.

Microarchitectural Defense and Recovery Against Buffer Overflow Attacks (버퍼 오버플로우 공격에 대한 마이크로구조적 방어 및 복구 기법)

  • Choi, Lynn;Shin, Yong;Lee, Sang-Hoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.3
    • /
    • pp.178-192
    • /
    • 2006
  • The buffer overflow attack is the single most dominant and lethal form of security exploits as evidenced by recent worm outbreaks such as Code Red and SQL Stammer. In this paper, we propose microarchitectural techniques that can detect and recover from such malicious code attacks. The idea is that the buffer overflow attacks usually exhibit abnormal behaviors in the system. This kind of unusual signs can be easily detected by checking the safety of memory references at runtime, avoiding the potential data or control corruptions made by such attacks. Both the hardware cost and the performance penalty of enforcing the safety guards are negligible. In addition, we propose a more aggressive technique called corruption recovery buffer (CRB), which can further increase the level of security. Combined with the safety guards, the CRB can be used to save suspicious writes made by an attack and can restore the original architecture state before the attack. By performing detailed execution-driven simulations on the programs selected from SPEC CPU2000 benchmark, we evaluate the effectiveness of the proposed microarchitectural techniques. Experimental data shows that enforcing a single safety guard can reduce the number of system failures substantially by protecting the stack against return address corruptions made by the attacks. Furthermore, a small 1KB CRB can nullify additional data corruptions made by stack smashing attacks with only less than 2% performance penalty.

Kinematic Analysis of Drag Flick Shooting Motion for Training Shooters Specializing in Penalty Corners in Women's Field Hockey: A Case Study (여자 필드하키 페널티코너 전문 슈터 양성을 위한 Drag Flick 슈팅 동작의 운동학적 분석: 사례 연구)

  • Park, Jongchul;Byun, Kyungseok;Kim, Eonho
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.2
    • /
    • pp.43-51
    • /
    • 2019
  • Objective: This study aims to propose an efficient technical model through a kinematic analysis of field hockey drag flick shooting motion in laboratory situations and game situations and to build up the basic data on drag flick shooting technique through a comparative analysis of a Korean specialized shooter and specialized shooters of competing Asian countries. Method: This study selected one Korean female national specialized shooter and seven specialized shooters of competing countries, China, Japan, India, and Malaysia, who participated in the 2018 Asian Hockey Champions Trophy as research subjects. In exercise situations, a 3-D motion analysis utilizing an infrared camera was conducted, while in game situations, an image-based 3-D motion analysis utilizing a digital camera was conducted. Results: The Korean specialized shooter had smaller changes in the angles of the trunk and the stick in game situations than in exercise situations. She had a high angular velocity of the trunk and the stick head, and the maximum speed of the ball was high. The Korean specialized shooter had the maximum angular velocity of the trunk higher than the specialized shooters of the competing countries did, and the angular velocity of the stick head and the maximum speed of the ball were in the average level. Conclusion: As for drag flick shooting in game situations, changes in the angle of the trunk and the stick were small, and the angular velocity was high due to the pressure that the shooters should perform the motion fast with the defenders' interruptions, and this high angular velocity of the trunk and the stick head affected the movement of the ball. Thus, the maximum speed of the ball was higher in game situations than in exercise situations. The Korean specialized shooter had the maximum angular velocity higher than the specialized shooters of the competing countries did; however, the maximum speed of the ball was average, and it turned out that the maximum speed of the ball was associated with the angular velocity of the stick head in P3. Therefore, Korean specialized shooters need complementary training for a change to the torque of the stick head, using the strong torque of the trunk.

Development of Finite Element Domain Decomposition Method Using Local and Mixed Lagrange Multipliers (국부 및 혼합 Lagrange 승수법을 이용한 영역분할 기반 유한요소 구조해석 기법 개발)

  • Kwak, Jun Young;Cho, Hae Seong;Shin, Sang Joon;Bauchau, Olivier A.
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.469-476
    • /
    • 2012
  • In this paper, a finite element domain decomposition method using local and mixed Lagrange multipliers for a large scal structural analysis is presented. The proposed algorithms use local and mixed Lagrange multipliers to improve computational efficiency. In the original FETI method, classical Lagrange multiplier technique was used. In the dual-primal FETI method, the interface nodes are used at the corner nodes of each sub-domain. On the other hand, the proposed FETI-local analysis adopts localized Lagrange multipliers and the proposed FETI-mixed analysis uses both global and local Lagrange multipliers. The numerical analysis results by the proposed algorithms are compared with those obtained by dual-primal FETI method.