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Abstract — In density-based topology optimization, 0/1 solutions are sought. Discrete topological problems are often
relaxed with continuvus design variables so that they can be solved using continuous mathematical programming.
Although the relaxed methods arc practical, grey areas appear in the optimum topologies. SIMP (Solid Isotropic
Microstructures with Penalization) employs penalty schemes to suppress the intermediate densities. SRV (the Sum of the
Reciprocal Variables) drives the solution to a 0/1 layout with the SRV constraint. However, both mcthods cannot
cficctively remove all the grey areas. SRV has some¢ numerical aspects. In this work, a new scheme SIMP-SRY is
proposed by combining SIMP and SRV approaches, where SIMP is cmployed to generate an intermediate solution to
initialize the design variables and SRV is then adupted to produce the tinak design. The new method turned ont to be
very effective in conjunction with the method of moving asymptotes (MMA) when using for the stiffuess topology
optimization of continuum structures for minimum compliance. The numerical examples show that the hybrid technique
can effectively remove all grey areas and gencrate stiffer optimal designs characterized with a sharper boundary in

contrast tv SIMP and SRV,
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1. Introduction

Structural topology optimization has been hecoming an
interesting research area in the structural optirnization community,
which has been applied to many engincering areas successfully
[1]. Topology optimization can be formulated as material
distribution problem that optimally distributes solid and void
material over a fixed design domain [2]. Cach design
variable defines the existence or non-existence of material at
a particular location. Therefore, topology optimization problem
is essentially an integer programming with 0 and 1 discrete
design variables. Unfortunately, the design problems posed
in this way usually illposed and cannot be directly solved by
using many continuumtype optimization technologics, because
the topology optimization problem formulated in this way
usually tends to the socalled “combmatorial explosion”. As
a result, some alternative methods were developed to solve
the optimization problems meaningfully.

One common practice is fo relax 0/1 design variables
using the homogenization mcthod |2| so that the matenial
distribution problem can be solved using most mathematical
programming with conlinuous design variables. However,
the homogenization method need to compute the ellective
elastic modulus of the porous matcrial and each element has
several design variables. In addition, the optimal topologies
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generated by this way are dillicult to manufacture since
many regions with perforated material will be involved. As
an alternative method, the power-law approach [3]. which
is also called the solid isotropic microstructure with penalization
(SIMP), has got a general acceptance in recent years duc (o
its computational efticiency and conceptual simplicity.

In the SIMP methad, the dependence of material pro-
perties with design variables 1s cxpressed in terms of the
material density using a simple ‘power-law” inlerpolation,
which means the intermediate values are suppressed by
penalizing the bulk densitics. in other words, the SIMP
approach is to replace the intcger variables with continuous
variables, and then introduce some form ol penalty that
steers the solution to discrete 0/1 values. Once the original
problem is relaxed in this way, grey regions with inter-
mediate densities between ¢ and 1 may occur i the optimum
topologics. To ensure an easy interpretation of distinet 0/1
optimal topologics, penalty schemes are often employed to
suppress the intermediate densitics. In fact, the SIMP methad
does indeed have a tendency to remove grey arcas, thus
producing 0/1 results. SIMP is so easy 1o implement that it
in enhancing (/1 solutions, has achieved prominent status in
(he topology optimization community. However, SIMP does
not directly resolve thc non-existence of solutions [1] and
thus numerical instabilities may occur |4]. Conscquently,
many numcrical techniques are incorporated to make the
optimization probtem well-posed [5,6,7.8]. Unfortunately;,
SIMP can not absolutely preclude grey areas with infermediate
densities around structural boundary in the final results.

Fuchs [9] proposcs a possible alternative to SIMP for
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generating 0/1 structures. The design variables are still the
densities of the finite elements but Young’s modulus is a
lincar function of these densities, in some sensc, a SIMP
material without penalty. To drive the solution to a 0/1
layout, a new constraint labeled the sum of the reciprocal
variables (SRV} is introduced into the optimization problem.
The constraint stipulates that the SRV must be larger or
equal to its value at a discrete design for a specified amount
of material. This method has tumed out to be very effective
in conpunction with the method of moving asymptotes (MMA)
[10). 0/1 results can be obtained in the optimal design of
piezoelectric (PZT) patches for reducing the noise of vibrating
surfaces [9]. When applied to compliance topology optimizatiors,
it is expected that SRV can produce stiffer and sharper 0/1
structures than SIMP for the same amount of material. But
there are only preliminary results and some numerical aspects
of the method are not addressed in Fuchs’s paper. In addition,
there are some unresolved instabilities in the program.

In this paper, the authors attempted to propose a combined
approach based on SIMP and SRV that employs the optimized
design vanables of SIMP to initialize the design variables of
SRV, and we therefore call this approach SIMP-SRV. When
the new method is used for classical stiffness topology
optimization of structures for minimum compliance, there are no
are stiffer than either the SIMP results or the SRV resullts.

This paper is organized as follows: In section 2, the SIMP
method is briefly reviewed. The SRV constraint is briefly
introduced in section 3. SIMP-SRV method is motivated in
section 4. While i section 5, the SIMP-SRV method is
presented. Some numerical results are presented in Section
6. Finally, in Section 7, the paper concludes with a summary
and a succinet discussion.

2. The SIMP Method

The design region is meshed into a fixed grid of » finite
elements. All elements carry densities that constitute the
design variables. The objective is to find an optimal material
distribution in the design domain that subjected to some given
constraints, leading to minimizing a specified objective
function, more often than not the compliance of the structure.
The standard approach is to let the design variables represent
the relative densities of the malerial in related elements, where
the density can vary from zero to one. To avoid the singularity
of the matrix, the density variables are given a lower limit.
Topology optimization problem to minimize the compliance
of the structure while it is subjected to a limited amount
of material in the design domain ¢an be writien as

Minimizer: CX)=1{F} r{ Uy

X=X, 0X,)
Vix<p*,

Subject tox} 0<x.  <x <1 (i=1...n), M

{F}=[K}{U}.

where X is the design variable, C is the compliance of
the structure, F7 is a vector containing the volume of
the elements, J'* is the volume constraint, 7 is the load
vector, U is the displacement vector, X is the stiffness
matrix,

This formulation will yield solutions with intermediate
densities (grey elements). In order to suppress these grey
elements, the SIMP method defines the matenal elasticity
modulus in element i as

EP(x)=xE" 2)

where E? is the modulus of the bulk material and p is
the penalty exponent. The stiffness matrix is given by:

K=K(X)=3 EK,=3x'E'K, (3)

Here, K; is the element stiffness matrix. Bendspe and
Signund [3] prove that the power-law approach is perfectly
valid when p is sufficiently big (in order to obtain true ‘0/1°
designs, p >3 is usually required). The reason is that, for
such a choice, intermediate densities are penalized when the
volume constraint is active; volume is proportional to x;, but
stiffness is much less than proportional to x;.

3. The SRV Constraint

The nomenclature SRV stands for the Sum of the Reciprocal
Variables, which is defined as [9]

SRV:E%;xmme,-Sl;Fl...n (4)
P

where topology optimization problem is the same as SIMP -
but the design domain is discretized into # equal (square)
finite elements. Obviously, the denominator cannot be zero
therefore the design variables have a small but finite lower
limit x,,,, from which to 1 x; can vary. Tt is reasonable
since the element densitics always have a minimum gage
when using a fixed grid, as mentioned earlier. Every binary
instance of the »-vector X' in which there are m components
with value 1 and (z—m) components with value x,;, is
defined as

n—m n—m
=m+
Xinin Xmin

SR Vdiscrete = ?4- (5)

Fuchs [9] proves that for any vector X that is not discrete
SRV (X) < SRV isorete (6)

If the optimum design vector is posed to be discrete,
SRVt = SRV jiscrese, thexe will be SRV (X) <SRV, In other
words, for the solution to be discrete, a necessary condition
is that SRV be a local maximum [9]. Now, the SRV constraint
is defined as

Z%Z”‘**m (the SRV constraint) 7

i Xinin
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Distinctly, since the maximum value of the sum of the
Inverses 1S m + (1 — m) / x,n, the only way to comply with
the SRV constraint is to satisty the equality, that is, (0 be at a
discrete design. The SRV constrain could have been presented
in the equality form but minimization algorithms usually
perform better with inequalities. For similar numerical reasons
the SRV constraint is usually relaxed to the form

Z%z n(m+ ﬂ) (the relaxed SRV constraint)  (8)
i M “min

where the coefficient 77 was typically recommended by Fuchs
[9] to be 0.95.

So, the topological optimization problem to minimize the
compliance of the structure subjected to a volume of material
constraint with equal finite elements can be described as

Minimize

T
X={x).xy,...,%,)

:C(X)={FY (U}

'Zx,=m+(n —M X i

¢

J {(n=m) ©)
Subject to:g 1o n—t
Z,-:-’C,-_ 77(m+ j

1
Xmin

O<xpin=x, =l (i—1---n)

= KIU}

Above is the Fuchs’s SRV constraint method. Tt is
successful in application of the layout design of PZ T patches
for minimizing the acoustical noise emanating from vibrating
surfaces. When SRV is applied in classical topological design
of structures for minimum compliance, sharp 0/1 results arc
obtained with smaller values of the objective functions than
those of SIMP {9].

4. Motivation for SIMP-SRV Method

As Fuchs |9] mentioned, SRV has some objective
advantages over SIMP. It seers that (here is nothing to prove
that SIMP can generatc 0/1 solutions. And the proposed
SRV method is a tochnique that can be substantiatod analyticalty;
it must converge to a /1 design, which appears in the
formulation. But there are only preliminary results and some
numerical aspects of the method are not addressed in Fuchs’s
paper. In addition, there are some unresolved instabilities
in the program; the success of the implementation of SRV
with MMA hinges on the coefficient 7 and the convergence
of the algorithm is rather scnsitive (o the parameter. The
authors fry to resolve the problem.

4.1 An alternative of SRV method

Since minimization algorithms usually perform better with
inequalifies, we change the equation constraint in (9) into
two inequalities. Analyzing the cquations (4) and (5), there
is a necessary condition or SRV (X) < SRV jer» Which is
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the equality constraint on the material amount in (9). In other

words, the cquality constraint must be satistied strictly.

Otherwise, when 'x #m+(n—m)x .y, SRV (X) < SRV e
-

is not always valid. Consequently, the equality constraint on
the amount of material is replaced by two inequality constraints
in Eq. (10} and is not relaxed as Fuchs uscs 77=0.95 for the
lower bound constraint.

[ Zx‘--/-l?'l+(n_’n:)'x|nill

m+(n—m)xmmszx,-
So, the model (9) is replaced by (11) as follows

' Minimizc_r: CO0= 50

X=(x,x5,-.x,}

nygnz-i-(n_'m)xmin
i

m+(n—m)xm-,n52x,-
J . { (11}
Subject to: (r>n1)
2
—=>nmt
Z[:xi Xmin

O<xpnsSx <l (i=1...n),

{1 =K1}

4.2 Numerical results of SRY method

The authors tested Fuchs’s [9] method with model (11) for
a canlilever cxample from Sigmund [11]. But the solution is
not what is expected; the obtained structure is not like a
cantilever and its compliance is much higher than both Fuchs’s
and Sigmund’s. ‘That’s to say, the test failed. In order to find
(he reasons, (he authors change some parameters. And the
numetrical results are given in following accordingly.

4.2.1 The lower limit of the design variables

While parametcr x,,;, is originally set to 0.001 in Fuchs’s
[9] paper, some diflerent valucs were obscrved in this work.
When it is set to 0.01, the algorithm converges so fast that
the structure is not shaped. But, when it is set to 0.0001, the
algorithm converges very slowly and the structure is different
from Fuchs's. Analyzing the SRV constraint (7), we can
understand easily that the procedure is sensitive 0 X,
because the lower limit of density variables is small as a
denominator and its slight variation will have a great impact
on the right value ol mequality (7).

4.2.2 The weighting factor 770f (he SRV constraint

Fuchs [9] emphasizes the parameter 77 has great influcnce
on the success of the numerical procedure and the convergence
of the algorithm. In fact, the solution varies with difterent 7
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in this work. Even if 771s set to 0.95 as Fuchs assigned in his
papcr [9], the obtained results are not what is expected. But,
as will been seen, once initialized the design variables with
the solution of SIMP, SRV with MMA can implement
successtully with being immune from dependence on the
coefficient 77 and the convergence of the algorithm is also
not strongly sensitive to the parameter. We will discuss how
77 impacts on the results for using SIMP-SRV in the following
section.

4.2.3 The initial values of design variable

The authors tested the SRV method with different initial
values of design variable. After the design variable’s initial
value, which is marked as Xj, is changed, the results vary
too. This implies that the success of the numerical procedure
seems to hinge on the starting solution.

Some theoretical explanations may be presented. Analyzing
the SRV constraint in Eq. (6), it is understandable easily that
the constraint is non-convex highly and as such local optima
may be abundant. The non-convexity typically means that
one can find several different local minima (which is what
the gradient based algorithms locate) and one can obtain
different solutions to the same discretized problem when
choosing differcnt starting solutions and different parameters
of the algorithms. In addition, the constraint conditions in
SRV are stronger than those in SIMP. Consequently, various
minima may encounter and as such the results are various,

5. SIMP-SRV Approach

['rom the above discussion, it is natural to combine SIMP
with SRV by using the optimal X which obtained from
SIMP for the initial X of SRV. In other words, STMP-SRY is
a two-pass method based on SIMP and SRV approaches:
fisstly, the standard SIMP is employed to generate an intermediate
optimal design sohition X™; secondly, SRV approach is
adopted to produce the final solution X, initializing the
design variables X with X™. This new method is called as
SIMP-SRYV. "The main idea of SIMP-SRYV is using the optimal
solutions of SIMP for the starting solutions of SRV to obtain
the final oplimized solutions.

The algonithm and models are taken from Sigmund [11].
But the heuristic minimization is avoided and instead MMA
is called as a subroutine becausc the constrainis are more
(han one. The STMP model is Eq. (1) in which p=3; the
SRV model is Eq. (11) in which p = 1, and the other relevant
parameters are the same as Sigmund’s [11). The algorithm
(lowchart of SIMP-SRYV is shown in Fig. 1.

In topology design (as in structural problems in the large),
most problems are not convex. Moreover, many problems
have multiple optima, i.¢. non-unique solutions. An example
of the latter is the design of a structure in uniaxial tension.
Non-convexily will produces some numerical problems such
as local minima and non-uniqueness. Most global optimization
methods seem to be unable to handle problems of the size of
a typical topology optimization problem. Based on experience,
it seems that continuation methods must be applied to ensure

Defining the design domain, load and
constraints;
Initialization of design variables X

v

FEA (p =3)

v

Using SIMP model (1), topological
design with SIMP method in
conjunction with MMA to obtain
intermediate optimal design solution

Xint

STMP

v

The design domain and load are the
same as SIMP; Redefining the
constraints in Eq. (11);

Initialization of design variables

X with x™t
v

FEA (p =1)

v

Using SRV model (11), topological
design with SRV method in
conjunction with MMA to obtain

the final solution X~

v

Plotting of density contour

SRV

End

Fig. 1. Flowchart for STMP-SRV method.

some sort of stable convergence towards reliably good
designs [1}. The idca of continuation methods is to gradually
change the optimization problem from an (artificial) convex
{or quasi-convex) problem to the original (non-convex) design
problem in a numbcr of steps. In each step a gradient-based
optimization algorithm is used until convergence.

According to the continuation methods, for the mesh-
independence filtet it is normally recommended to slart with
a large value of the filter size 7, (which gives designs with
bluny edges) and gradually decrease it, to end up with a
well-defined (/1design. So, a clear (/1 design can also be
obtained by simply stopping the filter when the optimization
nears convergence in SIMP. But a key is when the filter
should stop. The different stopping time of the filter will lead
to different results, which will be a new numerical instability.
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Table 1. The compliance of cantilever example for different mitial values of design variable with SIMP. The volume constraint is 40%

{(vol=04)
Xoi 0.01 025vol 050vol 075vol 1.00vol 125wvol 1.50vol 1.75vol 2.00 vol 0.90 1.00
C 57.3286 57.3142 573332 573327 573337 573466 573113 573465 573626 573520 57.3585

Table 2. Different compliance values and iterations of cantilever, The numbers within parenthesis are the relative compliances at the
minimum. 114 is the iteration in the SIMP stage and the numbers following the plus sign are the iterations in the SRV stage respectively

SIMP SRV SIMP-SRV
(Fuchs 2003) 7=0.90 n=095 n=097 n=10.99 = 1.0
Compliance 57.3337 ~ 51.8361 52.0330 53.1416 532145 53.4508
(Percent) {100%) (92%) {90.41%) (90.75%) (92.69%) {92.82%) (93.23%)
Iteration 114 1M416=120 114+19=133 114 +13=127 114+17=131 114+23=137

From another point of view, we would like 10 advocate
another method for achieving 0/1 solutions in density-based
topological design, mainly becausc it is in the nature of
research to tread unbeaten paths. SIMP-SRV can be an
alternative to SIMP. It could tumn out that each technique
(SIMP or SIMP-SRV) has its particular niches where it
performs best.

Incidentally, we employ SIMP but not SRV in the first
stage because SIMP scems not to strongly depend on the
initial values of design variables as SRV does. The authors
have tested a group of different initial values of design
variables for cantilever example under a tip load with the
SIMP method. The results show that all the topological
structures are similar to the cantilever beam in Fig. 2 (a). As
can be seen in Table 1, the diflerences of the compliances
for different starting solutions are small.

This is all the SIMP-SRV approach. The Matlab implemen-
tation of MMA was kindly provided by Svanberg and all the
examples were run on that platform. Although it needs
further study, some encouraging preliminary results, which
will be presented in the following section, have been
obtained. Of course, perhaps there are some other conjunction
ways.

6. Numerical Examples

In this work, the SIMP-SRV approach was only
implemented for achieving a minimum compliance in
classical topological design of structures. The first example,
in which a group of # were tested and its influence on the
results for using SIMP-SRV was analyzed, was the
cantilever under a tip load from Sigmund [11]. The other
was a bridge under a group of loads which are distributed
uniformly in the upper edge. In all instances we have
compared SIMP-SRV with SIMP under similar conditions.
And only the first is compared with SRV because there was
no example for the second problem in Fuchs’ {9] paper. We
will see the advantages of the hybrid method over SIMP and
SRV in terms of sharpness and stilfness of the 0/1 resulis.

6.1 Cantilever example
In this case, the relevant parameters in the SIMP stage are

the same as Sigmund’s [11] with X, = 0.001. In the SRV
stage, where p= 1, the initial X is the optimal X of the SIMP
stage and the other parameters are unchanged. In SRV
design of Fuchs [9], the weighting factors 77 is set to 0.95;
the equality constraint on the amount of material is replaced
by two inequality constrainis and a cocfficient 0095 is used
for the lower bound. Here, there is no coeflicient for the
lower limit of the volume; in other words, the coefficient is
set to 1. Fuchs [9] emphasizes the parameter 77 has great
influence on the success of the numerical procedure and the
convergence of the algorithm. Consequently, the author
analyzed five cases with different 77 in SIMP-SRV design.
The optimal topologies of cantilever beam under a down-
load at the tip with different approaches are shown in Fig. 2.
The valugs of the objective function and the iterations can be
seen in Table 2.

6.1.2 Comparison with numerical results

To validatc the optimal structures found with the
developed computer code, a comparison with the result
found by SIMP in conjunction with MMA and the one in
the paper by Fuchs [9] is given here. This subsection also
investigates the influence of varied 7.

The resulting topologies of cantilever beam are showed in
Fig. 2. An important observation is that the grey elements of
SIMP-SRV arc much less than those of SIMP. With the
increase of 77, the grey elements can be removed gradually.
According to the formulation of the SRV conslraint, the
lopological design must be in clear 0/1 pattems if it is not
relaxed. This is in fact obtained by setting 77 to 1. As seen in
Fig. 2 (g), there is no any grey element. Such turns out that
the quantity of grey elements is sensitive to 7.

In Table 2, the resulting objectives and iterations are
presented. As can be seen, the difference in the seven
objectives is significant. It is obvious that the compliance of
SIMP is the highest. The objective of the two-pass methiod
can decrease about 10%. Under similar conditions with
17=0.95, the optimal structure of SIMP-SRV is also stiffer
than that of SRV. Tt can be seen from the numbers following
the plus sign that the additional cost of computation is not
much greater than SIMP.
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(a) SIMP design

(c) SIMP-SRV design, 77 = 0.90

{e)} SIMP-SRYV design, 77=10.97

(b} SRV design (Fuchs, 2005)

{f) SIMP-SRYV design, 77=0.99

(g) SIMP-SRYV design, #7=1.0

Fig, 2. Optimal topology of cantitever beam under a down-load at the tip.

6.2 Cantilever with two loading example

We have also run the SIMP-SRV mcthod withoul filtering
(sec Fig. 3). In (his case, the cantilever beam is under two
loading conditions: a down-load and an up-load at the tip.
The results are compared with SIMP and SRV.

The relative minimum compliances are: (a) 100%
(61.5279); (b) 91.2%; (c) 91.6%; (d) 92.29% (56.7865); ()
92.87% (57.1388), respectively. The results indicate that the
grey areas would be removed cven if there is no filter, which
shows the (/1 feature is inherent to the method.

6.3 Bridge example
The design problem has been shown in Fig 4. The

domatn is meshed with 50x20 elements. The support areas
are fixed at the right and the left edge and the middle of the
bottom edge. The top edge is solid to endure a group of
distributed uniformly roads. The volume constraint is 40%
of the total volume. The other relevant parameters are the
same to the cantilever example. In this test case, we only
compared the STIMP-SRV with SIMP and in the former
design two cascs are analyzed; in one 77=0.95 and in the
other 7= 1.0. The compliance at the minimum with SIMP
is C=3137.6281. And the compliance in the two cases with
SIMP-SRYV are C =2862.8064 and C=2967.5242, respec-
tively. The optimal topologicat structures of bridge are
shown i Fig. 3. It is obvious that the objective of SIMP-



Xiangyang Zhou et al.

The SIMP-SRV Method for Stiffness Topology Optimization of Contimaum Structures 47

(b) SRV design including filter (Fuchs, 2005)

{a) SIMP design

(¢) SRV design without filter (Fuchs, 2005)

A X

(d) SIMP-SRYV design including filter(77 =1}  {e) SIMP-SRYV design without filter( 7} = 1)

Fig. 3. Optimal topology of canlilever beam under a down-load at the tip.

SRV is better than that o SIMP. And there are fewer grey
areas in the structures of SIMP-SRV. Once the SRV constraint
is not relaxed, the grey areas disappear completely. The
bridge example shows again that the SIMP-SRV methad is
superior to the SIMP method.

7. Summary and conclusions

In density-based topology optimization, (/1 solutions are
the objective sought by researchers. Recently, SIMP has
been accepted in the field for its simplicity and efficiency.
Lately, the SRV technique is presented by considering its

simplicity and validity. SRV is in the initial stage and has
some numerical issues that need to be further addressed, but
the authors combine STMP approach and SRV constraint for
topology optimization: the SIMP-SRV method. In order to
obtain better design, a (wo stages™ algorithm is used in
SIMP-SRYV: the first was done by SIMI® in conjunction with
MMA; in the second, the solution of the previous stage is
used for this stage’s starting solution and then SRV
accomplishes the following optimizing process to oblain the
final optimal solution with the help of MMA. It can bhe
furned out SIMP-SRV is more stable than SRV i the
implementation of program. Cantilever and bridge examples
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Fig. 4. Design domain of bridge.

(a) SIMP design

(b) SIMP-SRV design, 77=0.95

(c) SIMP-SRYV design, 77=1.0

Fig. 5. Optimal topology of bridge defined in Fig. 4,

were employed to test the potential of the SIMP-SRV
method. Different relaxed coefficients of the SRV constraint
were lested in order to study how it affects the solutions in
cantilever example.

Although the SRV method seems not be more
advantageous than the SIMP method because of the non-
convexity of the SRV constraint, the examples of classical
topology design for structural stiffness designs have shown

the effectiveness of the proposed combined method SIMP-
SRV. SRV tenders the results in the second stage, which is
close to the binary sct and even is a real binary set.
Moreover, compared with the resuits of SIMP, the total
compliance of SIMP-SRV decreases, which is of more
important meaning. Of course, the main work was done by
SIMP, but the additional cost of computation is not great in
the SRV stage. In a word, the SIMP-SRV method has some
obvious advantages and deserves a close attention.
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