• Title/Summary/Keyword: pedestrian flow

Search Result 104, Processing Time 0.022 seconds

Inferring Pedestrian Level of Service for Pathways through Electrodermal Activity Monitoring

  • Lee, Heejung;Hwang, Sungjoo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1247-1248
    • /
    • 2022
  • Due to rapid urbanization and population growth, it has become crucial to analyze the various volumes and characteristics of pedestrian pathways to understand the capacity and level of service (LOS) for pathways to promote a better walking environment. Different indicators have been developed to measure pedestrian volume. The pedestrian level of service (PLOS), tailored to analyze pedestrian pathways based on the concept of the LOS in transportation in the Highway Capacity Manual, has been widely used. PLOS is a measurement concept used to assess the quality of pedestrian facilities, from grade A (best condition) to grade F (worst condition), based on the flow rate, average speed, occupied space, and other parameters. Since the original PLOS approach has been criticized for producing idealistic results, several modified versions of PLOS have also been developed. One of these modified versions is perceived PLOS, which measures the LOS for pathways by considering pedestrians' awareness levels. However, this method relies on survey-based measurements, making it difficult to continuously deploy the technique to all the pathways. To measure PLOS more quantitatively and continuously, researchers have adopted computer vision technologies to automatically assess pedestrian flows and PLOS from CCTV videos. However, there are drawbacks even with this method because CCTVs cannot be installed everywhere, e.g., in alleyways. Recently, a technique to monitor bio-signals, such as electrodermal activity (EDA), through wearable sensors that can measure physiological responses to external stimuli (e.g., when another pedestrian passes), has gained popularity. It has the potential to continuously measure perceived PLOS. In their previous experiment, the authors of this study found that there were many significant EDA responses in crowded places when other pedestrians acting as external stimuli passed by. Therefore, we hypothesized that the EDA responses would be significantly higher in places where relatively more dynamic objects pass, i.e., in crowded areas with low PLOS levels (e.g., level F). To this end, the authors conducted an experiment to confirm the validity of EDA in inferring the perceived PLOS. The EDA of the subjects was measured and analyzed while watching both the real-world and virtually created videos with different pedestrian volumes in a laboratory environment. The results showed the possibility of inferring the amount of pedestrian volume on the pathways by measuring the physiological reactions of pedestrians. Through further validation, the research outcome is expected to be used for EDA-based continuous measurement of perceived PLOS at the alley level, which will facilitate modifying the existing walking environments, e.g., constructing pathways with appropriate effective width based on pedestrian volume. Future research will examine the validity of the integrated use of EDA and acceleration signals to increase the accuracy of inferring the perceived PLOS by capturing both physiological and behavioral reactions when walking in a crowded area.

  • PDF

The Development of Operating Standards for the Adjustment of Pedestrian Green Phasing at a Signalized Intersection (신호교차로에서 보행자신호 전시간 운영기준 설정을 위한 연구)

  • Lee Choul-Ki;Lee Seok;Shim Dae-Young;Kim Gyun-Jo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.1 s.2
    • /
    • pp.41-52
    • /
    • 2003
  • The purpose of this study was to test the effects of the pedestrian green signal adjustment on clearance of the turning vehicles impeding the through traffic flow at the signalized intersections, and thereby, suggest some operational criteria for adjustment of the pedestrian green signal. In order to test such effects, the pedestrian green time was adjusted so that it could started a few seconds later than the vehicle green time during peak hours, and thereby, the turning vehicle volume not cleared at the intersection was measured by extending the time gap by 2 seconds. (In general, the pedestrian green signal turns on at the same time as the vehicle green signal.) The results of this test can be summed up as follows; first, the longer the time gap was, the turning vehicle volume not cleared from the intersection decreased more. Second, in case there existed a storage space between intersection and crosswalk the effect of the turning vehicles on the through traffic flows was minimal. Third, at the pelican, the effect of the turning vehicles on the through traffic flow was minimal due to the structure of the intersection and the phase sequence. In conclusion, it was found that the adjustment of pedestrian green signal had the effect of enhancing the intersection operation. When adjusting the pedestrian green signal, it was deemed necessary to thoroughly survey the geometric structure of the intersection and collect the data on the turning traffic volume and thereby, apply the results of analysis flexibly to each intersection.

  • PDF

Pedestrian level wind speeds in downtown Auckland

  • Richards, P.J.;Mallinson, G.D.;McMillan, D.;Li, Y.F.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.151-164
    • /
    • 2002
  • Predictions of the pedestrian level wind speeds for the downtown area of Auckland that have been obtained by wind tunnel and computational fluid dynamic (CFD) modelling are presented. The wind tunnel method involves the observation of erosion patterns as the wind speed is progressively increased. The computational solutions are mean flow calculations, which were obtained by using the finite volume code PHOENICS and the $k-{\varepsilon}$ turbulence model. The results for a variety of wind directions are compared, and it is observed that while the patterns are similar there are noticeable differences. A possible explanation for these differences arises because the tunnel prediction technique is sensitivity to gust wind speeds while the CFD method predicts mean wind speeds. It is shown that in many cases the computational model indicates high mean wind speeds near the corner of a building while the erosion patterns are consistent with eddies being shed from the edge of the building and swept downstream.

Quantitative Evaluation of the Level of Service of Sidewalk Using GPS (GPS 활용 보도 서비스수준의 정량적 평가)

  • Kim, Yong-Seok;Choe, Jae-Seong
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.6
    • /
    • pp.85-93
    • /
    • 2011
  • The width of sidewalk is one of the important factors constructing a pleasant pedestrian environment. The procedure for sidewalk width design based on the Level of Service is suggested in Korea Highway Capacity Manual. However, this manual does not give a difference between the sidewalk on the street with the passage of the subway, therefore, the different flow characteristic of these places is not appropriately reflected. Though the pedestrian flow in the subway encounters a frequent stop and go situation as like the platoon of vehicles, the similar condition is rarely observed at the urban streets. The new measure of LOS for sidewalk is in need. The study reviewed the prominent measure of LOS and carried out the outdoor experiment to evaluate the new measure. Particularity, GPS was used to collect the pedestrian foot path trajectory for the quantitative evaluation and the results from quantitative and qualitative are compared.

Studies on the Performance Evaluation of Downsized High-efficiency Cooling Module (높이 축소형 고효율 냉각모듈의 성능 평가에 관한 연구)

  • Jung, Jung-Hun;Shin, Yoon-Hyuk;Park, Sung-Wook;Jeong, Sun-An;Kim, Sung-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.6
    • /
    • pp.61-67
    • /
    • 2011
  • The cooling module needs enough space (or distance) from hood to absorb the energy from any pedestrian collision. Downsized cooling module for pedestrian protection is important to reduce the severity of pedestrian injury. When a vehicle collision happens, the downsized cooling module is required to reduce the risk of injury to the upper legs of adults and the heads of children. In this study, the performance of cooling module to cool the engine was investigated under 25% height reduction. The heat dissipation and pressure drop characteristics have been experimentally studied with the variation of coolant flow rate, air inlet velocity and A/C operation ON/OFF for the downsized cooling module. The results indicated that the cooling performance was about 94% level compared to that of the conventional cooling module. Therefore, we checked that the cooling module had good performance, and expected that the cooling module could meet the same cooling performance as conventional cooling module through optimization of components efficiency.

Dispersal of Hazardous Substance in a City Environment Based on Weather Conditions and Its Risk Assessment at the Pedestrian Level (기상조건에 따른 도시내 위험물질 확산정보와 보행자환경 위험영향평가)

  • Kim, Eun-Ryoung;Lee, Gwang-Jin;Yi, Chaeyeon
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.4
    • /
    • pp.242-256
    • /
    • 2017
  • In this paper, dispersion scenarios concerning various meteorological conditions and real urban structures were made to estimate the impacts of hazardous substance leakage accidents and to reduce damages. Based on the scenario of the hazardous substance dispersion, the characteristics of the risk in the pedestrian environment were analyzed in Gangnam, Seoul. The scenarios are composed of 48 cases according to the meteorological conditions of wind direction and wind speed. In order to analyze the dispersion characteristics of the hazardous substances, simulations were conducted using a computational fluid dynamic (CFD) model with hydrogen fluoride releases. The validation for the simulated wind was conducted at a specific period, and all the calculated verification indices were within the valid range. As a result of simulated dispersion field at pedestrian level, it was found that the dispersion pattern was influenced by the flow, which was affected by the artificial obstacles. Also, in the case of the weakest wind speed of the inflow, the dispersion of the hazardous substance appeared in the direction of the windward side at the pedestrian level due to the reverse flow occurred at lower layers. Through this study, it can be seen that the artificial structures forming the city have a major impact on the flow formed in urban areas. The proposed approach can be used to simulate the dispersion of the hazardous substances and to assess the risk to pedestrians in the industrial complexes dealing with actual hazardous substances in the future.

Systematic influence of wind incident directions on wind circulation in the re-entrant corners of high-rise buildings

  • Qureshi, M. Zahid Iqbal;Chan, A.L.S.
    • Wind and Structures
    • /
    • v.22 no.4
    • /
    • pp.409-428
    • /
    • 2016
  • The mechanical and aerodynamic effect of building shape plays a dominate role in the pedestrian level wind environment. These effects have been presented in numerous studies and are available in many wind codes. However, most studies have focused on wind flow around conventional buildings and are limited to few wind directions. The present study investigated wind circulation in the re-entrant corners of cross-shaped high-rise buildings from various wind directions. The investigation focused on the pedestrian level wind environment in the re-entrant corners with different aspect ratios of building arrangements. Ninety cases of case study arrangements were evaluated using wind tunnel experimentation. The results show that for adequate wind circulation in the re-entrant corners, building orientations and separations play a critical role. Furthermore, in normal wind incident directions and at a high aspect ratio, poor wind flow was observed in the re-entrant corners. Moreover, it was noted that an optimized building orientation and aspect ratio significantly improved the wind flow in re-entrant corners and through passages. In addition, it was observed that oblique wind incident direction increased wind circulation in the re-entrant corners and through passages.

A Development of Integrated Evaluation Criteria for Quality of service on Pedestrian Networks (보행자 네트워크 서비스 질 평가를 위한 통합지표 개발)

  • Kim, Tae-Ho;Park, Je-Jin;Gang, Jeong-Gyu
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.191-200
    • /
    • 2009
  • This study develops composite indicators that is capable of estimating QOS (Quality of Service) of pedestrians by enhancing estimation for Level of Service in present transporting spaces for pedestrians that merely concerns quantitative indicators such as pedestrian flow rate, pedestrian stoppage. This paper conducts survey questionnaire to collect data. It utilizes AHP(Analytic Hierarchy Process) and ANP(Analytic Network Process). The main results show that: first, ANP is better analytic methods than AHP due to the fact that pedestrians feel repetition when they judge level of service. Second, qualitative factors such as pedestrian behaviors, maintenance, scenary for pedestrians and environments should be considered. Importance of qualitative factors is higher in residential area than other areas. I expect that using qualitative indicators and quantitative indicators is appropriate in order to estimate pedestrians' QOS.

A Study on the Change of Traffic Accidents Around the Pedestrian Priority Zone (보행자 우선도로 개선 사업으로 인한 교통사고 변화에 대한 연구)

  • JANG, Jae-Min;LEE, Young-Ihn;KIM, Sukhee;CHOI, Hoi-Kyun
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.2
    • /
    • pp.112-128
    • /
    • 2018
  • We are implementing pedestrian priority zone policy to certain districts to reduce greenhouse gas and to develop eco-friendly city which has more focus on pedestrians' walking environment. This policy has contributed to citizens' satisfaction level with improved public transportation service as well as more spacious streets for walk. Despite highly positive influence of pedestrian priority zone policy to the walking environment, we need to anticipate the impact of this to traffic environment as it may have bad effect to the overall traffic flow around the zone where the policy is implemented. This research has analyzed the change of characteristics of traffic accidents around the eco-traffic area of Hang-Gung dong, Suwon city, to understand impact of the pedestrian priority zone policy to the traffic surroundings, with pre-post analysis methodology. As a result, number of accidents related to pedestrians showed decrease as pedestrian priority zone is designed operated with focus to pedestrians. But accidents related illegal U-turn and violation of the traffic signal showed (significant) increase as there was a restriction of turns and decrease of overall traffic speed. To prevent the accidents above, we need to notice drivers to pay special attention before the pedestrian priority zone event, and information from this research should be given to the drivers through safety signs and mobile application at the place near to the event.

Pedestrian wind conditions at outdoor platforms in a high-rise apartment building: generic sub-configuration validation, wind comfort assessment and uncertainty issues

  • Blocken, B.;Carmeliet, J.
    • Wind and Structures
    • /
    • v.11 no.1
    • /
    • pp.51-70
    • /
    • 2008
  • CFD is applied to evaluate pedestrian wind comfort at outdoor platforms in a high-rise apartment building. Model validation is focused on generic building sub-configurations that are obtained by decomposition of the actual complex building geometry. The comfort study is performed during the design stage, which allows structural design changes to be made for wind comfort improvement. Preliminary simulations are performed to determine the effect of different design modifications. A full wind comfort assessment study is conducted for the final design. Structural remedial measures for this building, aimed at reducing pressure short-circuiting, appear to be successful in bringing the discomfort probability estimates down to acceptable levels. Finally, the importance of one of the main sources of uncertainty in this type of wind comfort studies is illustrated. It is shown that the uncertainty about the terrain roughness classification can strongly influence the outcome of wind comfort studies and can lead to wrong decisions. This problem is present to the same extent in both wind tunnel and CFD wind comfort studies when applying the same particular procedure for terrain relation contributions as used in this paper.