• Title/Summary/Keyword: peak shear strength

Search Result 224, Processing Time 0.035 seconds

An experimental study of scale effect on the shear behavior of rock joints

  • Lee Tae-Jin;Lee Sang-Geun;Lee Chung-In;Hwang Dae-Jin
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.156-161
    • /
    • 2003
  • Mechanical behavior of rock joints usually can be characterized by small-scale laboratory shear tests due to economical and technical limitations, but their applicability to the behaviour of rock mass has been always questioned by a number of researchers because of scale effect. Though there have been several researches regarding the scale effect, it has been a controversial problem how to apply the result of small-scale laboratory shear test directly to field design from different conclusions among researchers. In order to grasp the trend of scale effect of shear behavior, a series of direct shear tests on replicas of natural rock joint surfaces made of gypsum cement with different size and roughness were conducted and analyzed. Result showed that as the size of the specimen increased, average peak shear displacement increased, but average shear stiffness and average peak dilation angle decreased. As for the dependency of scale on shear strength, the degree of scale effect was dependent on normal stress and roughness of rock joint. For the condition of low normal stress and high roughness, decrease of average peak shear strength with increasing size of joint was evident.

  • PDF

Suction Stress and Unconfined Compressive Strength of Compacted Unsaturated Silty Sand (다짐된 불포화 실트질 모래의 흡수응력과 일축압축강도)

  • Park, Seong-Wan;Kwon, Hong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.8
    • /
    • pp.31-37
    • /
    • 2011
  • In order to evaluate the effect of matric suction on the strength and deformation characteristics, the unsaturated unconfined compression test is performed for the statical1y compacted silty sand. Specimens used were made under conditions with various initial degrees of saturation. The initial matric suction, matric suction at the peak shear strength and the volumetric deformation during the shear process were measured. From these results, it was found that the initial degree of saturation exerts the influence on the behaviors of suction, peak shear strength and the volumetric deformation. Furthermore, the suction stress($P_s$) which means the apparent cohesion due to matric suction in the unsaturated shear strength could be derived.

Shear Bond Strengths of Dentin Bonding Agent containing 0.2% Chlorhexidine (클로르헥시딘을 함유한 상아질 결합제의 전단결합강도)

  • Kim, Jinhyock;Kim, Kiseob;Kim, Jongsoo;Kim, Jongbin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.44 no.1
    • /
    • pp.82-88
    • /
    • 2017
  • The purpose of this study is to investigate shear bond strengths of $Peak^{(R)}$ Universal Bond (Ultradent, USA) containing 0.2% chlorhexidine in bovine dentin. Total of 30 bovine teeth were divided into three groups, 10 teeth each. Before comparing and evaluating shear bond strength, in group I, $Adper^{TM}$ Single Bond Universal (3M ESPE, USA) was applied, in group II, processing with $Consepsis^{(R)}$ (Ultradent, USA) was followed by applying $Adper^{TM}$ Single Bond Universal, and in group III, $Peak^{(R)}$ Universal Bond was applied and filled with $Filtek^{TM}$ Z-350 XT (3M/ESPE, USA) shade B3. As a result, processing with $Consepsis^{(R)}$ after acid etching showed no statistically significant influence on shear bond strength of dentin (p > 0.05). The shear bond strength of with or without $Consepsis^{(R)}$ on $Adper^{TM}$ Single Bond Universal and that of $Peak^{(R)}$ Universal Bond showed statistically significant difference (p < 0.05).

The Influence of Surface Roughness on Interface Strength (표면 거칠기 정도가 접촉면 전단력에 미치는 영향)

  • 이석원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.255-262
    • /
    • 1999
  • This paper summarizes the results of a study which uses the recently developed Optical Profile Microscopy technique (Dove and Frost, 1996) as the basis for investigating the role of geomembrane surface roughness on the shear strength of goomembrane/geotextile interfaces. The results show that interface friction can be quantitatively related to the surface roughness of the geomembrane. The peak and residual interface strengths increase dramatically through the use of textured geomembranes as opposed to smooth geomembranes. For the smooth geomembranes, the sliding of the geotextile is the main shear mechanism. For the textured geomembranes, the peak interface strength is mainly mobilized through the micro-texture of the geomembrane, however, the residual interface strength is primarily attributed to macro scale surface roughness which pulls out and breaks the filaments from the geotextile. The results of this study can be extended to the other interfaces such as joints in rock mass, and also can be used to provide a quantitative framework that can lead to a significantly improved basis for the selection and design of geotextiles and geomembranes in direct contact.

  • PDF

Numerical Analysis on Progressive Failure of Plane Slopes (평면 사면의 점진적 파괴에 관한 수치해석)

  • 송원경;권광수
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.31-38
    • /
    • 1997
  • Residual shear strength should be taken into consideration as well as peak one when analysing stability of slopes constituted by weathered rock or overconsolidated soils since such materials could be subjected to progressive failure mechanism. When landslide of a slope is related to progressive failure phenomenon, the failure might occur even though shear strength of the slope materials does not reach their residual shear strength over the whole slip surface. Therefore, stability of the slope concerned may be overstimated or underestimated when using only its peak or residual shear srength parameters. Mechanical description for progressive failure phenomenon is given by Bjerrum(1967). In parameters. Mechanical description for progressive failure phenomenon is given by Bjerrum(1967). In this study, his theory has been extended to estimate the distance of failed zone for a plane slope and the results calculated by this extended equatio has been compared with that obtained by numerical modelling using FLAC. In addition, stress state on the slip surface has been, in detail, analysed to understand failure mechanism when a limited progressive failure occurs. Effects of mechanical and hydraulic factors on progressive failure have also been analysed.

  • PDF

Experimental Study on Shear Mechanism Caused by Textured Geomembrane (돌기형 지오멤브레인에 의한 전단 메카니즘에 관한 실험 연구)

  • 이석원
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.57-68
    • /
    • 1999
  • This paper summarizes the results of a study which uses the recently developed Optical Profile Microscopy technique (Dove and Frost, 1996) as the basis for investigating the role of geomembrane surface roughness on the shear mechanism of geomembrane/geotextile interfaces. The alternative roughness parameters which consider the direction of shearing are described. These directional parameters are compared with the existing roughness parameters, and the relationship between these directional and non-directional parameters are investigated. Then, the relationship between interface shear strength and surface roughness quantified at the interface is investigated. The results show that interface friction can be quantitatively related to the surface roughness of the geomembrane. The peak and residual interface strengths increase dramatically through the use of textured geomembranes as opposed to smooth geomembranes. For the smooth geomembranes, the sliding of the geotextile is the main shear mechanism. For the textured geomembranes, the peak interface strength is mainly mobilized through the micro-texture of the geomembrane, however, the residual interface strength is primarily attributed to macro scale surface roughness which pulls out and breaks the filaments from the geotextile. The results of this study can be extended to the other interfaces such as joints in rock mass, and also can be used to provide a quantitative framework that can lead to a significantly improved basis for the selection and design of geotextiles and geomembranes in direct contact.

  • PDF

Evaluation of Friction Properties between Geostrip/Sandpaper Interface (지오스트립/샌드페이퍼 계면에서의 마찰특성 평가)

  • Lim, Ji-Hye;Byun, Sung-Won;Jeon, Han-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.27-33
    • /
    • 2006
  • Frictional properties between geostrip and sand paper interface were estimated considering soil particle size also the friction coefficients and angles were determined with normal stress. Three kinds of geostrips of design strength 50, 70, 100 KN/m were used and 5 sandpapers of P100, P220, P320, P400, P600 were used also. Shear strength between geostrip and sand paper interface with design strength showed big difference and this is due to the uniform surface pattern of each geostrip when contact to sandpaper without regard to design strength. Shear strength of geostrip was increased with design strength and geostrips/P100 sandpaper interface showed the biggest value. Finally, all of geostrips showed the decrease phenomena of post-peak strength and this is due to the abrasion of geostrip surface by shear test.

  • PDF

An Experimental Study for the Scale Effects on Shear Behavior of Rock Joint (절리면 전단거동의 크기효과에 관한 실험적 연구)

  • Lee, Sang-Eun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.3
    • /
    • pp.31-41
    • /
    • 2006
  • The scale effect of specimens on the shear behavior of joints is studied by performing direct shear tests on six different sizes in Granite. The peak and residual shear stress, shear displacement, shear stiffness, and dilation angle are measured with the different normal stress(0.29~2.65MPa) and roughness parameters. It is also shown that both the joint roughness coefficient(JRC) and the joint compression strength(JCS) reduce with increasing joint length. A series of shear tests show about 56~67% reduction in peak shear stress, and about 18~44% in residual shear stress, respectively as the contact area of joint increases from 12.25 to $361cm^2$. Also the variation of dilation angle is $27^{\circ}$ at normal stress of 0.29 MPa and $6^{\circ}$ at normal stress of 2.65 MPa, respectively. The envelopes considering scale effect for JRC are made for the peak shear strength of rock joint in comparison with the Barton's equation.

  • PDF

Shear deformation model for reinforced concrete columns

  • Sezen, Halil
    • Structural Engineering and Mechanics
    • /
    • v.28 no.1
    • /
    • pp.39-52
    • /
    • 2008
  • Column shear failures observed during recent earthquakes and experimental data indicate that shear deformations are typically associated with the amount of transverse reinforcement, column aspect ratio, axial load, and a few other parameters. It was shown that in some columns shear displacements can be significantly large, especially after flexural yielding. In this paper, a piecewise linear model is developed to predict an envelope of the cyclic shear response including the shear displacement and corresponding strength predictions at the first shear cracking, peak strength, onset of lateral strength degradation, and loss of axial-load-carrying capacity. Part of the proposed model is developed using the analysis results from the Modified Compression Field Theory (MCFT). The results from the proposed model, which uses simplified equations, are compared with the column test data.

A constitutive model for confined concrete in composite structures

  • Shi, Qing X.;Rong, Chong;Zhang, Ting
    • Steel and Composite Structures
    • /
    • v.24 no.6
    • /
    • pp.689-695
    • /
    • 2017
  • The constitutive relation is an important factor in analysis of confined concrete in composite structures. In order to propose a constitutive model for nonlinear analysis of confined concrete, lateral restraint mechanism of confined concrete is firstly analyze to study the generalities. As the foundation of the constitutive model, peak stress and peak strain is the first step in research. According to the generalities and the Twin Shear Unified Strength Theory, a novel unified equation for peak stress and peak strain are established. It is well coincident with experimental results. Based on the general constitutive relations and the unified equation for peak stress and peak strain, we propose a unified and convenient constitutive model for confined concrete with fewer material parameters. Two examples involved with steel tube confined concrete and hoop-confined concrete are considered. The proposed constitutive model coincides well with the experimental results. This constitutive model can also be extended for nonlinear analysis to other types of confined concrete.