• 제목/요약/키워드: peak set

검색결과 590건 처리시간 0.026초

초동발췌를 위한 탄성파 신호분석연구 (A Study in Seismic Signal Analysis for the First Arrival Picking)

  • 이두성
    • 지구물리와물리탐사
    • /
    • 제10권2호
    • /
    • pp.131-137
    • /
    • 2007
  • 초동발췌 방법과 이와 관련된 오차문제를 고찰하고 자료처리 전산화 측면에서 초동발췌 및 오차계산의 실용적 알고리즘을 제안하였다. 제안한 초동발췌 방법은 2단계로 구성된다. 1) 초동신호 중 트레이스 간 연속성이 양호한 최초의 피크(peak) 또는 트라프(trough)를 발췌한다. 2) 발췌시점 전방 일정구간의 기록을 직선으로 근사화 하고 이 직선의 시간 절편을 초동주시로 한다. 근사화 구간의 길이는 대략 초동 웨이브렛 폭의 1/4보다 다소 작게 설정한다. 초동발췌에 내재된 오차의 정량적인 척도는 기록의 특정시점에 초동의 도착 여부를 판단하는 데 필요한 기록의 길이로 정의한다. 기록의 길이를 나타내는 공식은 신호의 주파수대역과 신호대잡음비의 함수로 표시된다. 3개의 공대공 탄성파기록의 초동을 수동 및 제안한 방법으로 발췌하였고 각 트레이스의 오차한계를 계산하였다. 실험결과 제안한 근사직선 시간절편법의 우수한 성능과 발췌된 초동평가에 있어서 발췌오차의 유용성을 확인하였다.

DYNAMICAL CHARACTERISTICS OF SUNSPOT CHROMOSPHERES II. ANALYSIS OF CA II H, K AND ${\lambda}8498$ LINES OF A SUNSPOT (SPO 5007) FOR OSCILLATORY MOTIONS

  • Yoon, Tae-Sam;Yun, Hong-Sik;Kim, Jeong-Hoon
    • 천문학회지
    • /
    • 제28권2호
    • /
    • pp.245-253
    • /
    • 1995
  • We have analyzed the time series of Ca II H,K and ${\lambda}8498$ line profiles taken for a sunspot (SPO 5007) with the Echelle spectrograph attached to Vacuum Tower Telescope at Sacramento Peak Solar Observatory. Each set of spectra was taken simultaneously for 20 minutes at a time interval of 30 seconds. A total of 40 photographic films for each line was scanned by a PDS at Korea Astronomy Observatory. The central peak intensity of Ca II H ($I_{max}$), the intensity measured at ${\Delta}{\lambda}=-0.1{\AA}$ from the line center of ${\lambda}8498(I_{{\lambda}8489})$, the radial velocity ($V_r$) and the Doppler width (${\Delta}{\lambda}_D$) estimated from Ca II H have been measured to study the dynamical behaviors of the sunspot chromosphere. Fourier analysis has been carried out for these measured quantities. Our main results are as follows: (1) We have confirmed the 3-minute oscillation being dominant throughout the umbra. The period of oscillations jumps from 180 sec in the umbra to 500 to 1000 sec in the penumbra. (2) The nonlinear character of the umbral oscillation is noted from the observed sawtooth shaped radial velocity fluctuations with amplitudes reaching up to $5{\sim}6\;km/sec$. (3) The spatial distribution of the maximum powers shows that the power of oscillations is stronger in the umbra than in the penumbra. (4) The spatial distributions of the time averaged < $I_{max}$ > and < $V_r$ > across the spot are found to be nearly axially symmetric, implying that the physical quantities derived from the line profiles of Ca II H and ${\lambda}8498$ are inherently associated with the geometry of the magnetic field distribution of the spot. (5) The central peaks of the CaII H emission core lead the upward motions of the umbral atmosphere by $90^{\circ}$, while no phase delay is found in intensities between $I_{max}$ and $I_{{\lambda}8498}$, suggesting that the umbral oscillation is of standing waves.

  • PDF

전립선암의 온열치료를 위한 초음파변환기 개발에 관한 연구 (A study for implementation of ultrasonic transducer in the prostate cancer hyperthermia)

  • 박문규;노시철;박재현;최흥호
    • 센서학회지
    • /
    • 제18권5호
    • /
    • pp.377-384
    • /
    • 2009
  • The ultrasonic hyperthermia for oncology has been developed and studied. The HIFU(high intensity focused ultrasound) is the most recent method to treat the tumor by using ultrasound. In this study, an insertion-type transducer for treating a prostate cancer, which can focus the ultrasonic beam mechanically and electrically, was designed and developed. The developed transducer was composed of three arrays, and each array has 32 elements. For the purpose of the mechanical focusing, both side arrays are slanted to the center array by $15^{\circ}$. With this structure, NFL(near field length) was set up as 30 mm. The PZT-4 and two matching layers were used, and the backing layer was excepted to prevent energy losses. The acoustic field analysis and the heating test were performed to evaluate the performance of developed transducer. The shape of an acoustic field, peak pressure, and acoustic pressure distribution were compared with numerical simulation. The NFL was 32 mm, the beam width was 5 mm, focal area was $40\;mm^2$, and peak pressure was 5.5 MPa. With heating by using developed transducer, the temperature increased up to $33^{\circ}C$ at focal zone. As a result of this study, the usefulness of suggested transducer for prostate cancer hyperthermia was confirmed by the acoustic field analysis and the heating test with TMM(tissue mimicking) phantom.

저수지 유입량 예측을 위한 신경망 모형의 특성 연구 (A Study on Characteristics of Neural Network Model for Reservoir Inflow Forecasting)

  • 김재형;윤용남
    • 한국방재학회 논문집
    • /
    • 제2권4호
    • /
    • pp.123-129
    • /
    • 2002
  • 본 연구에서는 3층 신경망 모형에 의해 충주호의 유입량을 예측한 결과들을 이용하여 신경망 모형의 저수지 유입량 예측 특성을 분석하였다. 신경망 모형의 적절한 입력층 및 은닉층 뉴런 개수, 학습회수를 제시하였으며, 학습 첨두유량 크기가 예측된 첨두유량보다 작을 경우 예측 값이 과소평가되는 특징을 확인하였다. 또한 뉴런 개수, 학습회수가 과다할 경우 발생 가능한 과적합 현상을 확인하였으며, 정확한 예측을 위해 필요한 최소 학습자료 기간도 제시하였다. 결과적으로 충주호의 경우 $8{\sim}10$개의 뉴런 개수 및 $1500{\sim}3000$회의 학습회수를 이용한 신경망 모형이 적합한 것으로, 학습자료 기간 수는 최소한 600개 이상의 자료를 적용하여야 정확한 예측이 가능한 것으로 결과되었다.

Elastic floor response spectra of nonlinear frame structures subjected to forward-directivity pulses of near-fault records

  • Kanee, Ali Reza Taghavee;Kani, Iradj Mahmood Zadeh;Noorzad, Assadollah
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.49-65
    • /
    • 2013
  • This article presents the statistical characteristics of elastic floor acceleration spectra that represent the peak response demand of non-structural components attached to a nonlinear supporting frame. For this purpose, a set of stiff and flexible general moment resisting frames with periods of 0.3-3.6 sec. are analyzed using forty-nine near-field strong ground motion records. Peak accelerations are derived for each single degree of freedom non-structural component, supported by the above mentioned frames, through a direct-integration time-history analysis. These accelerations are obtained by Floor Acceleration Response Spectrum (FARS) method. They are statistically analyzed in the next step to achieve a better understanding of their height-wise distributions. The factors that affect FARS values are found in the relevant state of the art. Here, they are summarized to evaluate the amplification and/or reduction of FARS values especially when the supporting structures undergo inelastic behavior. The properties of FARS values are studied in three regions: long-period, fundamental-period and short-period. Maximum elastic acceleration response of non-structural component, mounted on inelastic frames, depends on the following factors: inelasticity intensity and modal periods of supporting structure; natural period, damping ratio and location of non-structural component. The FARS values, corresponded to the modal periods of supporting structure, are strongly reduced beyond elastic domain. However, they could be amplified in the transferring period domain between the mentioned modal periods. In the next step, the amplification and/or reduction of FARS values, caused by inelastic behavior of supporting structure, are calculated. A parameter called the response acceleration reduction factor ($R_{acc}$), has been previously used for far-field earthquakes. The feasibility of extending this parameter for near-field motions is focused here, suggested repeatedly in the relevant sources. The nonlinearity of supporting structure is included in ($R_{acc}$) for better estimation of maximum non-structural component absolute acceleration demand, which is ordinarily neglected in the seismic design provisions.

Use of large-scale shake table tests to assess the seismic response of a tunnel embedded in compacted sand

  • Zhou, Hao;Qin, Xiaoyang;Wang, Xinghua;Liang, Yan
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.655-665
    • /
    • 2018
  • Shield tunnels are widely used throughout the world. However, their seismic performance has not been well studied. This paper focuses on the seismic response of a large scale model tunnel in compacted sand. A 9.3 m long, 3.7 m wide and 2.5 m high rigid box was filled with sand so as to simulate the sandy soil surrounding the tunnel. The setup was excited on a large-scale shake table. The model tunnel used was a 1:8 scaled model with a cross-sectional diameter of 900 mm. The effective shock absorbing layer (SAL) on the seismic response of the model tunnel was also investigated. The thickness of the tunnel lining is 60 mm. The earthquake motion recorded from the Kobe earthquake waves was used. The ground motions were scaled to have the same peak accelerations. A total of three peak accelerations were considered (i.e., 0.1 g, 0.2 g and 0.4 g). During the tests, the strain, acceleration and soil pressure on the surface of the tunnel were measured. In order to investigate the effect of shock absorbing layer on the dynamic response of the sand- tunnel system, two tunnel models were set up, one with and one without the shock absorbing layer of foam board were used. The results shows the longitudinal direction acceleration of the model tunnel with a shock absorbing layer were lower than those of model tunnel without the shock absorbing layer, Which indicates that the shock absorbing layer has a beneficial effect on the acceleration reduction. In addition, the shock absorbing layer has influence on the hoop strain and earth pressure of the model tunnel, this the effect of shock absorbing layer to the model tunnel will be discussed in the paper.

Statistical reference values for control performance assessment of seismic shake table testing

  • Chen, Pei-Ching;Kek, Meng-Kwee;Hu, Yu-Wei;Lai, Chin-Ta
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.595-603
    • /
    • 2018
  • Shake table testing has been regarded as one of the most effective experimental approaches to evaluate seismic response of structural systems subjected to earthquakes. However, reproducing a prescribed acceleration time history precisely over the frequency of interest is challenging because shake table test systems are eventually nonlinear by nature. In addition, interaction between the table and specimen could affect the control accuracy of shake table testing significantly. Various novel control algorithms have been proposed to improve the control accuracy of shake table testing; however, reference values for control performance assessment remain rare. In this study, reference values for control performance assessment of shake table testing are specified based on the statistical analyses of 1,209 experimental data provided by the Seismic Simulator Laboratory of National Center for Research on Earthquake Engineering in Taiwan. Three individual reference values are considered for the assessment including the root-mean-square error of the achieved acceleration time history; the percentage of the spectral acceleration that exceeds the determined tolerance range over the frequency of interest; and the error-ratio of the achieved peak ground acceleration. Quartiles of the real experimental data in terms of the three objective variables are obtained, providing users with solid and simple references to evaluate the control performance of shake table testing. Finally, a set of experimental data of a newly developed control framework implementation for uni-axial shake tables are used as an application example to demonstrate the significant improvement of control accuracy according to the reference values provided in this study.

노인 보행 시 하지 근 활동 양상과 관절의 안정성이 낙상에 미치는 영향 -전향적 연구(Prospective Study)- (Effects of Muscle Activation Pattern and Stability of the Lower Extremity's Joint on Falls in the Elderly Walking -Half a Year Prospective Study-)

  • Ryu, Ji-Seon
    • 한국운동역학회지
    • /
    • 제29권2호
    • /
    • pp.79-88
    • /
    • 2019
  • Objective: The aim of this study was to determine the peak torques of the knee and ankle joint and local stability of the lower extremity's joints, and muscle activation patterns of the lower extremity's muscles between fallers and non-fallers in the elderly women during walking. Method: Four elderly women (age: $74.5{\pm}5.2yrs.$; height: $152.1{\pm}5.6cm$; mass: $55.3{\pm}5.4kg$; preference walking speed: $1.19{\pm}0.06m/s$) who experienced falls within six months since experiment had been conducted (falls group) and thirty-six subjects ($74.2{\pm}3.09yrs.$; height: $153.6{\pm}4.9cm$; mass: $56.7{\pm}6.4kg$; preference walking speed: $1.24{\pm}0.10m/s$) who had no experience in falls (non-falls group) within this periods participated in this study. They were measured torque peaks of the knee and ankle joint using a Human Norm and while they were walking on a treadmill at their natural pace, kinematic variables and EMG signals were collected with using a 3-D motion capture system and a wireless EMG system, respectively. Lyapunov Exponent (LyE) was determined to observe the dynamic local stability of the lower extremity's joints, and muscles activation and their co-contraction index were also analysed from EMG signals. Hypotheses between falls and non-falls group were tested using paired t-test and Mann-Whitey. Level of significance was set at p<.05. Results: Local dynamic stability in the adduction-abduction movement of the knee joint was significantly lower in falling group than non-falling group (p<.05). Conclusion: In conclusion, muscles which act on the abduction-adduction movement of the knee joint need to be strengthened to prevent from potential falls during walking. However, a small number of samples for fallers make it difficult to generalize the results of this study.

Three-dimensional finite element analysis of buccally cantilevered implant-supported prostheses in a severely resorbed mandible

  • Alom, Ghaith;Kwon, Ho-Beom;Lim, Young-Jun;Kim, Myung-Joo
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권1호
    • /
    • pp.12-23
    • /
    • 2021
  • Purpose. The aim of the study was to compare the lingualized implant placement creating a buccal cantilever with prosthetic-driven implant placement exhibiting excessive crown-to-implant ratio. Materials and Methods. Based on patient's CT scan data, two finite element models were created. Both models were composed of the severely resorbed posterior mandible with first premolar and second molar and missing second premolar and first molar, a two-unit prosthesis supported by two implants. The differences were in implants position and crown-to-implant ratio; lingualized implants creating lingually overcontoured prosthesis (Model CP2) and prosthetic-driven implants creating an excessive crown-to-implant ratio (Model PD2). A screw preload of 466.4 N and a buccal occlusal load of 262 N were applied. The contacts between the implant components were set to a frictional contact with a friction coefficient of 0.3. The maximum von Mises stress and strain and maximum equivalent plastic strain were analyzed and compared, as well as volumes of the materials under specified stress and strain ranges. Results. The results revealed that the highest maximum von Mises stress in each model was 1091 MPa for CP2 and 1085 MPa for PD2. In the cortical bone, CP2 showed a lower peak stress and a similar peak strain. Besides, volume calculation confirmed that CP2 presented lower volumes undergoing stress and strain. The stresses in implant components were slightly lower in value in PD2. However, CP2 exhibited a noticeably higher plastic strain. CONCLUSION. Prosthetic-driven implant placement might biomechanically be more advantageous than bone quantity-based implant placement that creates a buccal cantilever.

Stochastic analysis of the rocking vulnerability of irregular anchored rigid bodies: application to soils of Mexico City

  • Ramos, Salvador;Arredondo, Cesar;Reinoso, Eduardo;Leonardo-Suarez, Miguel;Torres, Marco A.
    • Earthquakes and Structures
    • /
    • 제20권1호
    • /
    • pp.71-86
    • /
    • 2021
  • This paper focuses on the development and assessment of the expected damage for the rocking response of rigid anchored blocks, with irregular geometry and non-uniform mass distribution, considering the site conditions and the seismicity of Mexico City. The non-linear behavior of the restrainers is incorporated to evaluate the pure tension and tension-shear failure mechanisms. A probabilistic framework is performed covering a wide range of block sizes, slenderness ratios and eccentricities using physics-based ground motion simulation. In order to incorporate the uncertainties related to the propagation of far-field earthquakes with a significant contribution to the seismic hazard at study sites, it was simulated a set of scenarios using a stochastic summation methods of small-earthquakes records, considered as Empirical Green's Function (EGFs). As Engineering Demand Parameter (EDP), the absolute value of the maximum block rotation normalized by the body slenderness, as a function of the peak ground acceleration (PGA) is adopted. The results show that anchorages are more efficient for blocks with slenderness ratio between two and three, while slenderness above four provide a better stability when they are not restrained. Besides, there is a range of peak intensities where anchored blocks located in soft soils are less vulnerable with respect to those located in firm soils. The procedure used in here allows to take decisions about risk, reliability and resilience assessment of different types of contents, and it is easily adaptable to other seismic environments.