• Title/Summary/Keyword: peak picking

Search Result 33, Processing Time 0.022 seconds

Optimized Automatic Noise Level Calculations for Broadband FT-ICR Mass Spectra of Petroleum Give More Reliable and Faster Peak Picking Results

  • Hur, Manhoi;Oh, Han-Bin;Kim, Sung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2665-2668
    • /
    • 2009
  • A new algorithm for determining noise level is proposed for more reliability in interpreting spectral data for complex Fourier transform ion cyclotron resonance (FTICR) mass spectra of petroleum. In the new algorithm, a moving window with a fixed number of data points was adopted, instead of a fixed m/z width. In the analysis of petroleum, it was found that a moving window of 50,000 or more data points was optimal. This optimized automated peak picking performed well even with frequency-dependant noise in the mass spectrum. Additionally, this fast, automated peak picking algorithm was suitable for the analysis of a large set of samples.

A Study in Seismic Signal Analysis for the First Arrival Picking (초동발췌를 위한 탄성파 신호분석연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.131-137
    • /
    • 2007
  • With consideration of the first arrival picking methodology and inherent errors in picking process, I propose, from the computerization point of view, a practical algorithm for picking and error computation. The proposed picking procedure consists of 2-step; 1) picking the first coherent peak or trough events, 2) derive a line which approximates the record in the interval prior to the pick, and set the intercept time of the line as the first break. The length of fitting interval used in experiment, is few samples less than 1/4 width of the arriving wavelet. A quantitative measure of the error involved in first arrival picking is defined as the time length that needed to determine if an event is the first arrival or not. The time length is expressed as a function of frequency bandwidth of the signal and the S/N ratio. For 3 sets of cross-well seismic data, first breaks are picked twice, by manually, and by the proposed method. And at the same time, the error bound for each trace is computed. Experiment results show that good performance of the proposed picking method, and the usefulness of the quantitative error measure in pick-quality evaluation.

Harmonic Peak Picking-based MVF Estimation for Improvement of HMM-based Speech Synthesis System Using TBE Model (TBE 모델을 사용하는 HMM 기반 음성합성기 성능 향상을 위한 하모닉 선택에 기반한 MVF 예측 방법)

  • Park, Jihoon;Hahn, Minsoo
    • Phonetics and Speech Sciences
    • /
    • v.4 no.4
    • /
    • pp.79-86
    • /
    • 2012
  • In the two-band excitation (TBE) model, maximum voiced frequency (MVF) is the most important feature of the excitation parameter because the synthetic speech quality depends on MVF. Thus, this paper proposes an enhanced MVF estimation scheme based on the peak picking method. In the proposed scheme, the local peak and the peak lobe are picked from the spectrum of a linear predictive residual signal. The normalized distance between neighboring peak lobes is calculated and utilized as a feature to estimate MVF. Experimental results of both objective and subjective tests show that the proposed scheme improves synthetic speech quality compared with that of the conventional one.

Automated structural modal analysis method using long short-term memory network

  • Jaehyung Park;Jongwon Jung;Seunghee Park;Hyungchul Yoon
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.45-56
    • /
    • 2023
  • Vibration-based structural health monitoring is used to ensure the safety of structures by installing sensors in structures. The peak picking method, one of the applications of vibration-based structural health monitoring, is a method that analyze the dynamic characteristics of a structure using the peaks of the frequency response function. However, the results may vary depending on the person predicting the peak point; further, the method does not predict the exact peak point in the presence of noise. To overcome the limitations of the existing peak picking methods, this study proposes a new method to automate the modal analysis process by utilizing long short-term memory, a type of recurrent neural network. The method proposed in this study uses the time series data of the frequency response function directly as the input of the LSTM network. In addition, the proposed method improved the accuracy by using the phase as well as amplitude information of the frequency response function. Simulation experiments and lab-scale model experiments are performed to verify the performance of the LSTM network developed in this study. The result reported a modal assurance criterion of 0.8107, and it is expected that the dynamic characteristics of a civil structure can be predicted with high accuracy using data without experts.

An Estimation method for Characteristic Parameters in a Low Frequency Signal Transformed by High Frequency Signals (고주파 신호에 의하여 변형된 저주파신호에서의 특성변수 추정 기법)

  • Yoo, Kyung-Yul
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.2
    • /
    • pp.86-88
    • /
    • 2002
  • An estimation method for the characteristic parameters in the low frequency signal is proposed in this paper. A low frequency signal is assumed to be modulated or distorted by high frequency terms. The algorithm proposed in this paper is designed to select set of local maximums in a successive manner, hence it is denoted as the iterative peak picking(IPP) algorithm. The IPP algorithm is operating in the time domain and is using only the comparison operation between two neighboring samples. Therefore, its computational complexity is very low and the delay caused by the computation is negligible, which make the real-time operation possible with economic hardware. The proposed algorithm is verified on the pitch estimation of speech signal and blood pulse estimation.

Modal and structural identification of a R.C. arch bridge

  • Gentile, C.
    • Structural Engineering and Mechanics
    • /
    • v.22 no.1
    • /
    • pp.53-70
    • /
    • 2006
  • The paper summarizes the dynamic-based assessment of a reinforced concrete arch bridge, dating back to the 50's. The outlined approach is based on ambient vibration testing, output-only modal identification and updating of the uncertain structural parameters of a finite element model. The Peak Picking and the Enhanced Frequency Domain Decomposition techniques were used to extract the modal parameters from ambient vibration data and a very good agreement in both identified frequencies and mode shapes has been found between the two techniques. In the theoretical study, vibration modes were determined using a 3D Finite Element model of the bridge and the information obtained from the field tests combined with a classic system identification technique provided a linear elastic updated model, accurately fitting the modal parameters of the bridge in its present condition. Hence, the use of output-only modal identification techniques and updating procedures provided a model that could be used to evaluate the overall safety of the tested bridge under the service loads.

Output-only modal parameter identification of civil engineering structures

  • Ren, Wei-Xin;Zong, Zhou-Hong
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.429-444
    • /
    • 2004
  • The ambient vibration measurement is a kind of output data-only dynamic testing where the traffics and winds are used as agents responsible for natural or environmental excitation. Therefore an experimental modal analysis procedure for ambient vibration testing will need to base itself on output-only data. The modal analysis involving output-only measurements presents a challenge that requires the use of special modal identification technique, which can deal with very small magnitude of ambient vibration contaminated by noise. Two complementary modal analysis methods are implemented. They are rather simple peak picking (PP) method in frequency domain and more advanced stochastic subspace identification (SSI) method in time domain. This paper presents the application of ambient vibration testing and experimental modal analysis on large civil engineering structures. A 15 storey reinforced concrete shear core building and a concrete filled steel tubular arch bridge have been chosen as two case studies. The results have shown that both techniques can identify the frequencies effectively. The stochastic subspace identification technique can detect frequencies that may possibly be missed by the peak picking method and gives a more reasonable mode shapes in most cases.

Enhanced Maximum Voiced Frequency Estimation Scheme for HTS Using Two-Band Excitation Model

  • Park, Jihoon;Hahn, Minsoo
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1211-1219
    • /
    • 2015
  • In a hidden Markov model-based speech synthesis system using a two-band excitation model, a maximum voiced frequency (MVF) is the most important feature as an excitation parameter because the synthetic speech quality depends on the MVF. This paper proposes an enhanced MVF estimation scheme based on a peak picking method. In the proposed scheme, both local peaks and peak lobes are picked from the spectrum of a linear predictive residual signal. The average of the normalized distances of local peaks and peak lobes is calculated and utilized as a feature to estimate an MVF. Experimental results of both objective and subjective tests show that the proposed scheme improves the synthetic speech quality compared with that of a conventional one in a mobile device as well as a PC environment.

Design of Wideband Speech Coder Using the MLT Residual Signal (MLT 여기신호를 이용한 광대역 음성 부호화기 설계)

  • Oh Yeon-Seon;Shin Jae-Hyun;Lee In-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.248-254
    • /
    • 2005
  • In this Paper, the structure of a split bandwidth wideband speech coder and its highband coder for tone qualify elevation are Proposed. The lowband and highband by the split bandwidth method are encoded independently applying the G.729E and MLT (Modulated Lapped Transform) residual model. In the highband structure which is encoded by low bit rate of 4kbps, the MLT residual signals are distinguished to voice and unvoice signal . The voice signals are applied to MLT peak picking method by lowband pitch period. Because transformed MLT residual signals are represented by periodic signal that have periodic peak. The unvoice signals are applied to MLT which linear prediction spectral response is added and do vector quantization. Performance for proposed 15.8kbps wideband speech coder was verified through subjective listening test.

MODAL PARAMETER IDENTIFICATiON METHODS WITHOUT INPUT INFORMATION: A COMPARATIVE STUDY (구조물의 응답만을 이용한 모드계수 추정법에 대한 비교연구)

  • 윤정방;이진학;이종재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.439-445
    • /
    • 2001
  • In this paper, several modal identification techniques without using the input information are investigated. Generally, the peak picking method is most widely used, however, other methods may give better estimates particularly for the cases with close modes and/ or highly damped system modes. Example analyses were carried out on three different structures, and the estimated modal parameters by various methods are compared.

  • PDF