
ETRI Journal, Volume 37, Number 6, December 2015        © 2015  Jihoon Park and Minsoo Hahn   1211 
http://dx.doi.org/10.4218/etrij.15.0115.0124 

In a hidden Markov model–based speech synthesis 
system using a two-band excitation model, a maximum 
voiced frequency (MVF) is the most important feature  
as an excitation parameter because the synthetic speech 
quality depends on the MVF. This paper proposes an 
enhanced MVF estimation scheme based on a peak 
picking method. In the proposed scheme, both local peaks 
and peak lobes are picked from the spectrum of a linear 
predictive residual signal. The average of the normalized 
distances of local peaks and peak lobes is calculated and 
utilized as a feature to estimate an MVF. Experimental 
results of both objective and subjective tests show that the 
proposed scheme improves the synthetic speech quality 
compared with that of a conventional one in a mobile 
device as well as a PC environment. 
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I. Introduction 

In human–device interaction via speech, text-to-speech 
synthesis (TTS) synthesizes speech from a message of a device. 
In certain situations, a user may not be able to see or control a 
device (for example, a blind person approaching a vehicle), in 
which case, TTS can prove to be a useful, helpful technology. 

A corpus-based unit concatenating speech synthesis is    
the mainstream of TTS [1]. A corpus-based TTS selects 
appropriate units from a large corpus database and 
concatenates them. However, for a corpus-based TTS, large 
amounts of unit data is required to obtain natural, high-quality 
speech.  

In recent decades, mobile devices, such as smartphones, e-
book readers, and car navigation systems, have been developed 
and diffused rapidly. Accordingly, an embedded TTS has long 
been a requirement of mobile devices. An embedded TTS can 
be used in several applications, such as in a short message, in 
an e-mail, in an e-book, or in a car navigation system. However, 
because mobile devices are limited in terms of memory and 
computation power, a corpus-based TTS is unsuitable for an 
embedded TTS. On the contrary, a hidden Markov model 
(HMM)–based speech synthesis (HTS) developed by Tokuda 
and others is suitable for an embedded TTS [2]–[6]. A HTS 
uses context-dependent HMMs to model parameters extracted 
from a speech database, and speech is then generated from the 
now trained context-dependent HMMs.  

The synthesis engine of an HTS requires small memory size 
and low computation power. An HTS system consists of 
training and synthesis parts. In the training part, the spectral 
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parameter, the excitation parameter, and the state duration of a 
speech unit are represented by a context-dependent HMM 
model. In the synthesis part, speech is synthesized by Mel-log 
spectrum approximation (MLSA) filtering with speech 
parameters generated from trained context-dependent HMMs 
[5]. 

A drawback of Tokuda and others’ HTS when compared 
with a corpus-based TTS is the quality of the synthetic speech. 
The drawback occurs as a result of their conventional 
excitation (CE) model, which is generated from the random 
noise and periodic pulse train of unvoiced and voiced speech, 
respectively. The CE model highlights the fact that synthesized 
speech, such as vocoded speech, contains buzzy sounds. Thus, 
to remove such buzzy sounds, a mixed excitation (ME) model 
using a multi-band mixing model was developed by 
Yoshimura and others applied a mixed-excitation linear 
predictive (MELP) algorithm of a vocoder to HTS [7]. In this 
model, excitation is divided into five fixed frequency bands 
and generated by a periodic impulse train or random noise   
in accordance with the periodicity. Although this ME model 
reduces buzzy sounds, the resolutions of the five fixed bands 
are not optimal for wide-band speech. The reason for this is 
that the MELP vocoder was developed for narrow-band speech. 
In addition, if the number of bands is increased in the ME 
model, then it needs much memory for trained data. To 
overcome this problem, Kim and others incorporated two-band 
excitation (TBE) based on a harmonic plus noise speech model 
into the HTS of Tokuda and others [8]–[10]. This TBE model 
decomposes speech into periodic and non-periodic parts via a 
maximum voiced frequency (MVF). Periodic and aperiodic 
excitations are generated by a periodic pulse train and a 
random noise, respectively. Therefore, estimating an MVF is of 
extreme importance to the TBE model because the speech 
quality is highly dependent upon the MVF.  

To estimate an MVF, Kim and others proposed an MVF 
estimation scheme based on a filtering-based TBE (FTBE) 
scheme. This scheme utilizes the normalized auto-correlation 
of the high-pass filtered speech around pitch lag [8]–[10]. In 
addition, to improve the accuracy of an MVF, Han and others 
proposed an analysis by synthesis (ABS)–based MVF 
optimization scheme using the initial MVF, in [11]. However, 
the FTBE scheme occasionally misestimates the initial MVF, 
because the scheme estimates the MVF from an input signal 
including a spectral envelope. In particular, it is difficult to find 
the boundary of the periodic and aperiodic parts due to the 
spectral envelope that lies within the interval in which the 
periodic and aperiodic parts are mixed together in the 
frequency domain. 

Thus, this paper proposes an enhanced MVF estimation 
scheme based on peak picking to improve the accuracy of an 

initial MVF. The proposed scheme uses a linear predictive (LP) 
residual signal as an excitation signal instead of an input signal. 
To estimate an MVF, both a harmonic peak and a peak lobe are 
picked from the spectrum of the LP residual signal and 
normalized distances of local peaks and peak lobes are utilized. 

This paper is organized as follows. Section II describes the 
TBE model and conventional MVF estimation scheme. 
Section III explains the overall procedure of the proposed 
scheme in detail, and Section IV shows the experimental 
results. Finally, conclusions and future works are given in 
Section V. 

II. TBE Model 

The TBE model is essentially similar to the ME model. In 
the ME model, the excitation signal is divided into five fixed 
frequency bands [7]. The periodicity of each band is decided 
by the band-pass voicing strength. The excitation signal in each 
band is generated by the periodic impulse train or the random 
noise according to the periodicity. The ME model successfully 
reduces the buzzy sounds and improves the quality of synthetic 
speech. However, these bands are not optimal for wide-band 
speech, because an MELP vocoder is designed for narrow-
band speech only. If the number of bands in the ME model is 
increased to obtain a better resolution, then more memory is 
required. Therefore, a TBE model was proposed to overcome 
such a problem [8]. In the TBE model, the MVF, a time-
varying parameter, marks the boundary between the periodic 
and aperiodic bands in the frequency domain, as shown in  
Fig. 1. Furthermore, this model is very useful in terms of 
human auditory characteristics, as in the synthetic speech 
created using the TBE model is of better quality than that 
created using the ME model [8]. The TBE model generates an 
excitation signal from a fundamental frequency and an MVF. 
Therefore, an accurate MVF leads to a high quality of synthetic 
speech. For accurate MVF estimation, it is important to 
precisely estimate the fundamental frequency. However, for the 
purposes of our paper, we make the assumption that the 
fundamental frequency is given to have already been estimated 
accurately. 
 

 

Fig. 1. Spectrum of voiced speech and MVF. 
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Fig. 2. Procedure of optimum MVF estimation scheme. 
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Recently, an ABS-based optimum MVF estimation scheme 

was proposed [11]. Figure 2 describes the procedure of this 

scheme. This scheme estimates an MVF in two steps. At the 

first step, an initial MVF is estimated by the FTBE scheme [8]. 

The FTBE utilizes the normalized auto-correlation of the high-

pass filtered speech to estimate an MVF. The filtered speech, 

denoted by HPF ,fs  is defined by the convolution between an

input speech and a high-pass filter (HPF), where f is the cut-off 

frequency of the HPF. The normalized auto-correlation, Rf, can 

be represented as 
1
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where τ, n, and N are an estimated pitch, a time index, and the 

size of an analysis window, respectively. The normalized auto-

correlation of the filtered speech is bounded between –1 and 1; 

however, practically, it is usually bounded between 0 and 1. If 

the cut-off frequency is smaller than the MVF, then HPF
fs  is

periodic, and Rf would be close to 1. On the other hand, if  
the cut-off frequency is larger than the MVF, then s fHPF  is 
aperiodic, and Rf would be close to 0. Thus, if Rf is smaller than 

0.5, then its cut-off frequency is adopted as the MVF. We 

designed 16 HPFs using the Butterworth method, and their cut-

off frequencies increase in 500 Hz increments from 500 Hz to 

7,500 Hz. In the second step, an optimum MVF is found by an 

MVF optimization scheme. The scheme utilizes an ABS 

scheme to minimize spectral distortion. Firstly, an excitation 

signal is generated with initial MVF and fundamental 

frequency. Secondly, speech is synthesized by an MLSA filter 

with an extracted Mel-cepstrum and generated excitation. Then, 

the synthetic speech quality is measured by the spectral 
distortion and the symmetric Kullback–Leibler distance 
(SKLD) is used as the spectral distortion measurement. The 
SKLD is calculated as 
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where Si is the normalized power spectrum of the ith frame, 
and k and K are the index of frequency and size of a discrete 
Fourier transform (DFT), respectively. This procedure is 
performed repeatedly among the MVF candidates, which are 
determined from the initial MVF. Then the MVF candidate 
having minimum spectral distortion is finally determined as the 
optimum MVF. This scheme leads to high synthetic speech 
quality. However, if the accuracy of the initial MVF is 
decreased, then the synthesized speech would be of a poorer 
quality. 

III. Proposed MVF Estimation Scheme

The main problem with the FTBE scheme is that it 
misestimates MVFs, because the scheme estimates an MVF 
from an input signal including a spectral envelope. In particular, 
this scheme misestimates an MVF at an interval in which 
periodic and aperiodic components in the frequency domain 
are mixed together. In such an interval, it is difficult to find the 
boundary that divides the periodic and aperiodic parts, due to 
the presence of a spectral envelope. This is the root cause of 
poor-quality synthesized speech. If an MVF is misestimated 
and is too high, then any subsequent synthesized speech will 
contain buzzy sounds. In contrast, if an MVF is misestimated 
and is too low, then any resulting synthesized speech sounds 
will be too harsh. To obtain an accurate MVF estimation, an LP 
residual is utilized as the excitation of speech. The LP residual 
signal removes the spectral envelope and emphasizes the 
periodic component. However, the FTBE scheme is difficult 
to use with residual signals, because the normalized auto-
correlation of a high-pass filtered residual signal, such as that in 
(1), is too small at a cut-off frequency of 500 Hz. Therefore, a 
residual signal is more unsuitable than an original signal for use 
as an MVF decision threshold in the FTBE scheme. However, 
the periodic part of the spectrum of a residual signal is better 
represented than that of the original spectrum. Harmonic peaks 
within the spectrum of a residual signal can be detected easily 
and be a robust feature in the search for the boundary between 
periodic and aperiodic parts. Therefore, to more accurately 
estimate an initial MVF, we propose an MVF estimation 
scheme based on a harmonic peak picking TBE (PTBE) 
scheme using a residual signal. The proposed scheme, 
described in Fig. 3, also includes the same MVF optimization 
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Fig. 3. Procedure of proposed MVF estimation scheme. 
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technique explained in Section II. This scheme performs an 
MVF estimation in a voiced frame decided by an 
unvoiced/voiced decision. For such a decision, an estimated 
fundamental frequency is used at each frame. If such a 
fundamental frequency is 0, then the input frame is an 
unvoiced frame and the MVF is just 0. Otherwise, the input 
frame is deemed to be a voiced frame. 

1. LP Residual Calculation 

The first step of the proposed scheme is to extract an LP 
residual signal using LP filtering from which to select local 
peaks. To this end, an LP coefficient (LPC), a, is calculated 
from the Levinson–Durbin algorithm. Upon calculating the 
LPC, an LP residual signal, r, is obtained by LP filtering and 
can be written as 

1

( ) ( ) ( ) ( ),
p

i

r n x n a i x n i


               (3) 

where i and p are the index of LPC and LPC order, respectively. 
Because LP filtering emphasizes only the periodicity, which  
is highly related with harmonic peaks, the harmonic peaks 
themselves can easily be found. An example of a residual 
signal is shown in Fig. 4. From this, we can see that the 
spectrum of a residual signal is flatter than that of an input 
signal. 

2. Local Peak Picking 

In this process, a harmonic local peak and its location are 
calculated using an LP residual signal. Because harmonics are 
closely related with periodicity, harmonic peaks and their 
locations are significant in attempts to estimate an MVF. First, 
an LP residual signal is transformed into a frequency-domain  

Fig. 4. Spectrum: (a) original signal and (b) LP residual signal.
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signal by a DFT, and the power spectrum is commonly 
calculated as 

 10( ) 20 log ( ) ,RP k R k              (4) 

where R is a residual signal in the frequency domain and   

is an absolute notation. To find local peaks, the values of all 

peaks in PR are found using 

   ( ) ( ) 0 and ( 1) 0 ,
peak( )

0 otherwise,
R R RP k P k P k

k
      


 (5) 

where 

( ) ( ) ( 1).R R RP k P k P k              (6) 

Second, the locations of local peaks are determined through 

0
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F
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where lP and F0 are the location of a local peak and the 
estimated fundamental frequency, respectively. In addition, the 
condition on (7) is that 0 0/ 2 / 2F i F    and the search 

criteria is S 01,2,..., /F F     , where FS a sampling rate and 

    means to round down. Finally, values of local peaks, 

peakl, are obtained from “peak” and “lP” as follows: 

0 S
P
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F F
l k
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 (8) 

The distances between adjacent local peaks denote the 
periodicity of a spectrum. Thus, the location at where such 
distances begin to change rapidly marks the beginning of the  
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Fig. 5. Peak location: (a) all peaks and (b) local peaks (circle: 
picking local peak positon from all peaks). 
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aperiodic part of the spectrum. Figures 5(a) and 5(b) show the 
peaks and local peaks of a spectrum of a residual signal, 
respectively. Adjacent local peaks within the periodic part of a 
spectrum are separated by a uniform distance; this is not true of 
the aperiodic part of the spectrum, whereby it can be seen  
that non-uniform distances separate adjacent local peaks (see   
Fig. 5(b)). 

3. Shaping Curve Estimation and Truncation 

Even though local peaks can be correctly found from the 
spectrum of a residual signal, it is not easy to find the location 
of an MVF using only these local peaks. Not only the local 
peaks themselves but also the distances between the nearby 
lobes of local peaks are an important feature for calculating the 
periodicity of a spectrum. To separate the lobes from the 
spectrum of the residual signal, we truncate the residual 
spectrum using a shaping curve of the local peaks. The shaping 
curve, Sh, is obtained through a linear interpolation of the 
values of local peaks. After obtaining the shaping curve, a 
truncation curve, Tr, is calculated by 

 Tr( ) Sh( ) 3 dB,k k               (9) 

where 3 dB is used as a threshold for truncation because it  
has been generally defined as the bandwidth of the cut-off 
frequency. Next, the power spectrum of the truncated residual 
signal, PT, is obtained by 

T ( ) ( ) Tr( ).RP k P k k              (10) 

An example of this process is shown in Fig. 6. Figures 6(a) and  

 

Fig. 6. (a) Estimated shaping curve and (b) truncated residual 
spectrum (red line: shaping curve, circle: evidence of 
breaking periodicity). 
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6(b) show an estimation of the shaping curve and the point at 
which to truncate the residual signal by (10), respectively. 

4. Normalized Distance Calculation and MVF Estimation 

The final process determines an initial MVF from local 
peaks and truncated residual spectrum. The periodicity of the 
truncated residual spectrum is related to the distances between 
local peaks. Therefore, these distances are calculated as 
features to decide an initial MVF. The first distance value is 
used for normalization and is kept as a reference distance. After 
the distances between adjacent local peaks have been 
calculated, they are normalized using the stored reference 
distance. In addition, the distances between adjacent peak-lobes 
are also normalized using a reference distance for the lobes in 
the same way because the distances between the peak lobes is 
an important feature of the periodicity of the spectrum. The 
normalized distances help to estimate an accurate MVF. All 
frequency values that fall below that of the MVF mark the  
 

 

Fig. 7. Normalized distances (blue: local peaks, red: peak lobes).
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periodic part of the spectrum. Here, the normalized distances of 
the local peaks tend to revolve around a value of 1 over the 
changes in frequency. On the contrary, all frequency values that 
are higher than the MVF mark the aperiodic part of the 
spectrum. Here, the normalized distances rapidly increase or 
decrease over the changes in frequency. The obtained 
normalized distances are shown in Fig. 7. 

In our system, the average of the normalized distances of 
local peaks and peak lobes is utilized to determine an MVF. If 
this average becomes less than 0.5 or more than 1.5 at some 
frequency, then the frequency is used as an initial MVF. In 
other words, the lowest frequency that satisfies the above 
condition is estimated as the initial MVF.  

IV. Experiment and Results 

1. Experimental Setup 

For our experiments, we utilized training data consisting of 
4,000 sentences uttered by a group of five females. Three 
thousand of these sentences were used for a training procedure, 
and the remaining 1,000 sentences were used for a synthesis 
procedure. The average duration of each sentence is about 3 s, 
and all sentences were sampled at 16 kHz with a 16-bit 
quantization level. The version of the HTS system used for the 
experiments was 2.1 and the same contexture information 
provided by the HTS homepage was used. Thirteen Mel-
cepstrum coefficients including a 0th-order coefficient were 
extracted from a 25 ms hamming-windowed speech, with a   
5 ms frame-shift as a spectral parameter. The excitation signal 
is modeled by the optimized MVF estimation–based PTBE 
(O-PTBE) proposed in Section III. In our experiments, the 
initial MVF is quantized by a 500 Hz step size due to the same 
condition of [10] and MVF optimization uses the initial MVF 
and four other MVFs nearby the initial MVF [11]. The 
fundamental frequency is extracted with the speech 
transformation and representation based on an adaptive 
interpolation of a weighted spectrogram (STRAIGHT) [12]. 
The MVF is determined as described in Section III. For the 
proposed scheme, we use an LPC of order 16 and a 512-point 
fast Fourier transform executed as part of a time-to-frequency 
mapping technique. 

To evaluate the performance of the O-PTBE, excitation 
signals were generated by CE, ME, and optimized MVF 
estimation–based FTBE (O-FTBE). The ME scheme is 
modeled by STRAIGHT. All HTS systems produce 
synthesized speech via MLSA filtering of the input excitation 
signals. Firstly, we used SKLD and log-spectral distance (LSD) 
as the objective distortion measurements between the original 
and the synthesized speech in both the training and synthesis 

procedures. The SKLD was calculated by  

 SKLD
( )

( ) ( ) log ,
( )

k

P k
D P k Q k

Q k

 
  

 
        (11) 

where P and Q denote the power spectra of the original and 
synthesized speech, respectively. In addition, we obtain the 
LSD by using 

2

LSD
( )

10log .
( )

k

P k
D

Q k

 
  

 
           (12) 

Distortions were measured for all of the trained sentences.  
In the synthesis procedure, distortions were measured after 
aligning the durations of the synthesized speeches and original 
speeches through use of a dynamic time warping technique. As 
a subjective listening test, the mean opinion score (MOS) and 
preference tests were performed [13]. Ten experienced listeners 
evaluated the synthesized speech quality of five speeches taken 
from within the set of training sentences and five speeches 
taken from within the set of non-training sentences. For the 
listening tests, listeners heard synthesized speech through the 
loudspeaker of a smartphone (SAMSUNG Galaxy Note 2) and 
through the ear pieces of a Stax Lambda Pro headphone set 
attached to a desktop PC. In the MOS test, listeners scored the 
quality of synthesized speech by the CE, ME, O-FTBE, and O-
PTBE schemes. In the preference test, listeners evaluated a pair 
of speeches synthesized by the O-FTBE and O-PTBE schemes. 

2. Experimental Results 

Table 1 shows the results of the objective distortions. In the 
training procedure, the ME scheme looks to have performed 
slightly better than the others. The ME scheme achieved an 
SKLD gain of 201.37 and an LSD gain of 68.10 as a minimum 
distortion, while O-PTBE achieved SKLD and LSD gains of 
201.42 and 68.12, respectively. However, the results were 
different for the synthesis procedure. The results of the O-
FTBE and O-PTBE schemes show smaller distortions than 
those obtained for the ME scheme. The minimum distortion 
was obtained through the O-PTBE scheme with an SKLD gain  
 

Table 1. Objective tests results. 

Training procedure Synthesis procedure 
 

SKLD LSD SKLD LSD 

CE 207.86 69.83 328.37 83.24 

ME 201.37 68.10 322.29 82.87 

O-FTBE 203.35 68.32 320.32 82.53 

O-PTBE 201.42 68.12 317.07 82.18 
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Fig. 8. MOS test results: (a) PC headphones and (b) smartphone 
speakers. 
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Fig. 9. Preference test results: (a) PC headphones and (b) 
smartphone speakers. 
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of 317.07 and an LSD gain of 82.18. 

Figures 8 and 9 show the results of the MOS and preference 
tests, respectively. In the MOS test (Fig. 8), the O-PTBE 
scheme scores the best score among all the schemes at both the 
PC and the smartphone. The average MOS of the O-PTBE 
scheme was 3.315 and its gains were 0.645 and 0.135 
compared with the ME and O-FTBE schemes, respectively. In 
the preference test (Fig. 9), the listeners preferred the speech 
synthesized by the O-PTBE scheme in the smartphone as well 
as the PC. In all subjective tests, the O-PTBE scheme showed 
the best performance among the other schemes. As shown in 
Table 1, Fig. 8, and Fig. 9, the results of the objective and 
subjective tests can be summarized as follows: the O-PTBE 
scheme showed better performance than the CE and O-FTBE 
schemes for all evaluations. In addition, the O-PTBE scheme 
outperforms the ME scheme for all evaluations except the 
objective tests in the training procedure. In summary, the O-
PTBE scheme guarantees a more accurate MVF and improves 
the quality of synthesized speech. 

Figure 10 shows an example of a spectrogram and MVF 
contour comparisons between the O-FTBE and the O-PTBE 
schemes in the training procedure. The background is a 
spectrogram and the solid line is the MVF contour. The MVF 
contours are estimated by the O-FTBE and O-PTBE schemes  

 

Fig. 10. Spectrograms and MVF contours in training procedure:
(a) O-FTBE and (b) O-PTBE. 
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Fig. 11. Spectrograms and MVF contours in synthesis procedure:
(a) O-FTBE and (b) O-PTBE. 
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from identical speech samples. Figure 11 shows an example of 
the spectrogram and the MVF contour comparisons between 
the O-FTBE and the O-PTBE schemes in the synthesis 
procedure. The background and the solid line are the 
spectrogram and the MVF contour, respectively. The two 
different schemes synthesize the same text but use different 
methods, as well as estimating the MVF contour. 

Table 2 lists the binary file sizes of the synthesis system. 
Even though the total memory for the trained HMM data, 
decision tree data, and a synthesizer engine is only about    
2.1 MB, the synthesized speech shows a fairly good quality.  
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Table 2. Binary file size of synthesis system. 

Module Size (MB) 

Spectrum 1.292 

Excitation 0.160 Trained HMM data 

Duration 0.014 

Spectrum 0.254 

Excitation 0.304 Decision tree data 

Duration 0.037 

Synthesizer engine 0.073 

Total 2.134 

 

 
The memory sizes of the O-FTBE and O-PTBE schemes are 
the same, whereas the quality of the speech synthesized by the 
O-PTBE scheme is better than that of the O-FTBE scheme. 

V. Conclusion 

The TBE model was a useful excitation model and the MVF 
is an important feature for the TBE model. However, the FTBE 
scheme misestimates the MVF because of the spectral 
envelope of speech. Thus, this paper proposed a harmonic peak 
picking–based MVF estimation scheme using the spectrum of 
an LP residual signal and proved the performance of the 
proposed scheme. From our results, it can be seen that the 
proposed scheme obtains the best results in both objective and 
subjective tests in comparison with other schemes. The main 
reason for this is that the proposed scheme estimates a reliable 
MVF in the training procedure. Work still remains to be done 
in improving the excitation generation module in the synthesis 
procedure. 
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