• Title/Summary/Keyword: peak efficiency

Search Result 1,105, Processing Time 0.03 seconds

Numerical optimization of Wells turbine for wave energy extraction

  • Halder, Paresh;Rhee, Shin Hyung;Samad, Abdus
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.1
    • /
    • pp.11-24
    • /
    • 2017
  • The present work focuses multi-objective optimization of blade sweep for a Wells turbine. The blade-sweep parameters at the mid and the tip sections are selected as design variables. The peak-torque coefficient and the corresponding efficiency are the objective functions, which are maximized. The numerical analysis has been carried out by solving 3D RANS equations based on k-w SST turbulence model. Nine design points are selected within a design space and the simulations are run. Based on the computational results, surrogate-based weighted average models are constructed and the population based multi-objective evolutionary algorithm gave Pareto optimal solutions. The peak-torque coefficient and the corresponding efficiency are enhanced, and the results are analysed using CFD simulations. Two extreme designs in the Pareto solutions show that the peak-torque-coefficient is increased by 28.28% and the corresponding efficiency is decreased by 13.5%. A detailed flow analysis shows the separation phenomena change the turbine performance.

Peak-to-Average Power Ratio (PAPR) Reduction Techniques of OFDM Signals

  • Lee, Byung-Moo
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.7-8
    • /
    • 2008
  • It is well-known that one of the most serious problems of Orthogonal Frequency Divison Multiplexing (OFDM) is its high Peak-to-Average Power Ratio (PAPR) which seriously limits the power efficiency of High Power Amplifier (HPA). This paper introduces various methodologies to cope with this problem.

  • PDF

Precise Analytical Solution for the Peak Gain of LLC Resonant Converters

  • Hong, Sung-Soo;Cho, Sang-Ho;Roh, Chung-Wook;Han, Sang-Kyoo
    • Journal of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.680-685
    • /
    • 2010
  • Although LLC resonant converters have the advantages of a wide operation range and high efficiency, the lack of an analytical solution for the peak gain makes it difficult to optimize the resonant tank design, when considering not only the normal condition but also the holdup time requirement. In this paper, based on a mathematical analysis of a LLC resonant converter at the peak gain point, an analytical solution for the peak gain has been developed. By using the developed analytical solution, the peak gain with given resonant tank parameters can be obtained. To confirm the validity of the developed analytical solution, simulations and experimental results are compared.

Synthesis and Characterization of Blue Light-Emitting Hyperbranched Poly(Fluorene) (청색 발광 하이퍼브랜치 PF의 합성과 특성 분석에 관한 연구)

  • Ahn, Taek
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.701-707
    • /
    • 2010
  • We have synthesized new pure blue-emitting hyperbranched polyfluorene (Hyper-PDHF) through $A_2$ and $B_3$ type monomers via Suzuki coupling polymerization. The weight-average molecular weights ($M_w$) of the Hyper-PDHF was found about 35,000 with polydispersity index as 6.1. The UV absorption peak of the Hyper-PDHF film was at around 335 nm which was far blue shifted than that of linear PDHF film which was found at 380 nm. The pure blue photoluminescene (PL) peak of the Hyper-PDHF was measured at 419 nm as main emission with 397 and 444 nm as shoulder peaks. The Hyper-PDHF showed also higher PL quantum efficiency in solution than linear PDHF (Hyper-PDHF, $\Phi$sol =0.81; PDHF, $\Phi$sol=0.78). The annealed PDHF film (5 hrs on hot plate at $80^{\circ}C$) showed increased shoulder peak emissions and emission color was changed into the green emission. But, Hyper-PDHF film shows almost no excimer emission peak even the film was annealed. The enhanced PL efficiency and no excimer emission of Hyper-PDHF results from the inhibition of excimer formation by the introduction of the hyperbranched system into the polyfluorene backbone.

Analysis on Efficiency of Hierarchical Structure for a Grid Transit Network (격자형 대중교통 노선망의 위계구조 효율성 분석)

  • Park, Jun-Sik;Go, Seung-Yeong;Jeon, Gyeong-Su
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.4
    • /
    • pp.123-133
    • /
    • 2007
  • This study analyzed whether a transit network with hierarchy is efficient or not, and if transit network hierarchy has cost efficiency, then which condition guarantees the efficiency of the transit network hierarchy. The authors modeled the total cost of the transit network and suggested the conditions in which the transit network hierarchy has cost efficiency through comparing the cost of the transit network with and without hierarchy. The efficiency of transit network hierarchy is guaranteed when the travel cost savings induced by using a higher hierarchy transit network is larger than the increasing non-travel cost, which is the sum of access cost, waiting cost, and operating cost, induced by the introduction of a higher hierarchy transit network. This result is consistent with common sense and with the concept of cost and benefit analysis. If a passenger traveling within the area divided by a higher hierarchy transit network uses only a lower hierarchy transit network and the passenger traveling out of the area divided by the higher hierarchy transit network uses both lower and higher hierarchy transit networks, the travel demand using the higher hierarchy transit network is inversely proportional to the square of the line spacing. This means that the transit network becomes more efficient and small increases of travel demand guarantee the efficiency of the transit network hierarchy as the connectivity of the network becomes higher. This result shows that transit networks have economies of aggregation. This study is the first analytical research on transit network hierarchy and is expected to be a basis for numerical research. However, numerical research should complement this study, since analytical research has some limitations for considering a real network.

Study on the Performance Testing of the Closed Ice Thermal Energy Storage System using Screw Capsules (스크류 캡슐형 밀폐식 빙축열시스템의 성능시험에 관한 연구)

  • Kim, Kyung-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.39-45
    • /
    • 2006
  • The decrease in the summer peak electric load in our country is very important. The government has arranged and implemented a lot of support policies and statutes to decrease the peak electric load. And the ice thermal energy storage system is known as one of the alternatives. The purpose of this paper is to evaluate the efficiency and thermal characteristics of the closed ice thermal energy storage system using screw capsules. The measured thermal energy storage density is about 18.4 USRT-h/m3 (=232.9 MJ/m3), which is higher than 13.0 USRT-h/m3 (=164.6 MJ/m3), a low criterion of normal performance. And The efficiency of the discharging process and the total energy utilization is 96.2% and 2028.4 kcal/kWh respectively.

Development of Optimal Operation Algorithm about CES Power Plant (CES 발전소의 최적운용 알고리즘 개발)

  • Kim, Yong-Ha;Park, Hwa-Yong;Kim, Eui-Gyeong;Woo, Sung-Min;Lee, Won-Ku
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.2
    • /
    • pp.61-70
    • /
    • 2012
  • Recently due to the increasing of the importance on the green energy is getting higher by implementing EERS(Energy Efficiency Resource Standards) and NA(Negotiated Agreement) such as lacks of natural resources and The United Nations Framework Convention on Climate Change. And the most practical solution is CHP(Combined Heat and Power) which performs the best energy efficiency. This paper developed optimal operation mechanism of CES(Community Energy System) for enhancement of energy efficiency using CHP(Combined Heat and Power), PLB(Peak Load Boiler) and ACC(ACCumulator) capacities. This method optimally operated these capacities calculated the maximum profits by Dynamic Programing. Through the case studies, it is verified that the proposed algorithm of can evaluate availability.

Prediction of High Temperature Plastic Deformation Variables on Al 6061 Alloy (Al 6061 합금의 고온 소성변형 조건의 예측)

  • 김성일;정태성;유연철;오수익
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.576-582
    • /
    • 1999
  • The high temperature behavior of Al 6061 alloy was characterized by the hot torsion test in the temperature ranges of 400∼550℃ and the strain rate ranges of 0.05∼5/sec. To decide optimum deformation condition, three types of deformation maps were individually made from the critical strain (εc). deformation resistance(σp) and deformation efficiency (η). The critical strain(εc) for dynamic recrystallization (DRX) which was decided from the inflection point of strain hardening rate(θ) - effective stress (σ) curve was about 0.65 times of peak strain (εp). The relationship among deformation resistance (peak stress, σp), strain rate (ε), and temperature (T) could be expressed by ε=2.9×1013[sinh(0.0256σp]7.3exp (-216,000/RT). The deformation efficiency (η)which was calculated on the basis of the dynamic materials model (DMM) showed high values at the condition of 500∼550℃, 5/sec for 100% strain. The results from three deformation maps were compared with microstructures. The best condition of plastic deformation could be determined as 500℃ and 5/sec.

  • PDF

Electric power generation from treatment of food waste leachate using microbial fuel cell

  • Wang, Ze Jie;Lim, Bong Su
    • Environmental Engineering Research
    • /
    • v.22 no.2
    • /
    • pp.157-161
    • /
    • 2017
  • Simultaneous treatment of food waste leachate and power generation was investigated in an air-cathode microbial fuel cell. A TCOD removal efficiency of $95.4{\pm}0.3%$ was achieved for an initial COD concentration of 2,860 mg/L. Maximum power density ranged was maximized at $1.86W/m^3$, when COD concentration varied between 60 mg/L and 2,860 mg/L. Meanwhile, columbic efficiency was determined between 1.76% and 11.07% for different COD concentrations. Cyclic voltammetric data revealed that the oxidation peak voltage occurred at -0.20 V, shifted to about -0.25 V. Moreover, a reduction peak voltage at -0.45 V appeared when organic matters were exhausted, indicating that reducible matters were produced during the decomposition of organic matters. The results showed that it was feasible to use food waste leachate as a fuel for power generation in a microbial fuel cell, and the treatment efficiency of the wastewater was satisfied.

Design of Inverse E Class Frequency Multiplier with High Efficiency (고효율 inverse E급주파수 체배기 설계)

  • Roh, Hee-Jung;Cho, Jeong-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.98-102
    • /
    • 2011
  • This paper describes inverse E class frequency multiplier which is lower inductance and peak switching voltage than E class frequency multiplier. The frequency multiplier is designed to generate 5.8[GHz] frequency by doubling the input frequency 2.9[GHz]. The peak switching voltage of designed inverse E class frequency multiplier with 11[V] is lower 4[V] than that of E class frequency multiplier with 15[V]. The inverse E class frequency multiplier has a conversion gain 6[dB] at output power 21[dBm] and maximum 35[%] power efficiency.