• Title/Summary/Keyword: peak delay

Search Result 309, Processing Time 0.033 seconds

Code Tracking Scheme for Cosine Phased BOC Signals Based on Combination of Sub-correlations (부상관함수 결합에 기반한 Cosine 위상 BOC 코드 추적 기법)

  • Lee, Young-Po;Kim, Hyun-Soo;Yoon, Seok-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.9C
    • /
    • pp.581-588
    • /
    • 2011
  • In this paper, we propose a novel unambiguous code tracking scheme for cosine phased binary offset carrier (BOC) signals. We first obtain the sub-correlation functions composing the BOC autocorrelation function, and then, re-combine the sub-correlation functions generating a correlation function with no side-peak. Finally, by using the correlation function with no side-peak in the delay lock loop, the proposed scheme performs unambiguous signal tracking. Numerical results demonstrate that the proposed scheme provides a performance improvement over the conventional unambiguous scheme in terms of the tracking error standard deviation (TESD).

Restarting Trains Under Moving Block Signaling - An Expert System Approach

  • K, K.-Wong;Akio, Katuki
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.96.6-96
    • /
    • 2001
  • A high peak power demand at substations will result under Moving Block Signalling (MBS) when a dense queue of trains begins to start from a complete stop at the same time in an electrified railway system. This may cause the power supply interruption and in turn affect the train service substantially. In a recent study, measures of Starting Time Delay (STD) and Acceleration Rate Limit (ARL) are the possible approaches to reduce the peak power demand on the supply system under MBS. Nevertheless, there is no well-defined relationship between the two measures and peak power demand reduction (PDR). In order to attain a lower peak demand at substations on different traffic conditions and system requirements, an expert system is one of the possible approaches to procure the appropriate use of peak demand reduction measures ...

  • PDF

Novel Fast Peak Detector for Single- or Three-phase Unsymmetrical Voltage Sags

  • Lee, Sang-Hoey;Cha, Han-Ju
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.5
    • /
    • pp.658-665
    • /
    • 2011
  • In the present paper, a novel fast peak detector for single- or three-phase unsymmetrical voltage sags is proposed. The proposed detector is modified from a single-phase digital phase-locked loop based on a d-q transformation using an all-pass filter (APF). APF generates a virtual phase with $90^{\circ}$ phase delay. However, this virtual phase cannot reflect a sudden change of the grid voltage in the moment of voltage sag, which causes a peak value to be significantly distorted and to settle down slowly. Specifically, the settling time of the peak value is too long when voltage sag occurs around a zero crossing, such as phase $0^{\circ}$ and $180^{\circ}$. This paper describes the operating principle of the APF problem and proposes a modified all-pass filter (MAPF) to mitigate the inherent APF problem. In addition, a new fast peak detector using MAPF is proposed. The proposed detector is able to calculate a peak value within 0.5 ms, even when voltage sag occurs around zero crossing. The proposed fast peak detector is compared with the conventional detector using APF. Results show that the proposed detector has faster detection time in the whole phase range. Furthermore, the proposed fast peak detector can be effectively applied to unsymmetrical three-phase voltage sags. Simulation and experimental results verify the advantages of the proposed detector and MAPF.

An Improved Design Method of FIR Quadrature Mirror-Image Filter Banks (개선된 FIR QMF 뱅크의 설계 방법)

  • 조병모;김영수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2C
    • /
    • pp.213-221
    • /
    • 2004
  • A new method for design of two-channel finite-impulse response(FIR) quadrature mirror-image filter(QMF) banks with low reconstruction delay using weighting function is proposed. The weighting function used in this paper is calculated from the previous updated filter coefficients vector which is adjusted from iteration to iteration in the design of QMF banks. In this paper, passband and stopband edge frequency are used in design of QMF banks with low delay characteristic in time domain instead of specific frequency interval where the artifacts occur in conventional design method. The investigation of specific frequency interval where artifacts occur can not be required by using passband and stopband edge frequency. Some comparisons of performance are made with other existing design method to demonstrate the proposed method for QMF bank design. and it was observed that the proposed method using the weighted function and passband and stopband edge frequency improves the peak reconstruction error by 0.001 [dB], the peak-to-peak passband ripple by 0.003[dB], SNR with a white noise by 7[dB] and SNR with a step input by 32[dB], but with a reduction of the computational efficiency because of updating the weighting function over the conventional method in Ref [11].

Improved methods for measuring early reflections from Five-channel room impulse response using newly introduced Peak-Detecting algorithm

  • Kim Lae-Hoon;Doo Sejin;Oh Yangki;Lee Heewon;Sung Koeng-Mo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.439-442
    • /
    • 2000
  • When we measure the acoustical properties of a room using multiple microphone system, it is important to grasp exact time delay of the early reflections from impulse response pair. But it is often very difficult to identify the early reflections in natural shape, because a waveform may be deformed due to the characteristics of a sound source loudspeaker, microphone and reflected wall and overlapping of plural waveform. In this paper to obtain more accurate and enough early reflections, we propose the brand-new five-channel sound receiving system and introduce peak-detecting algorithm. The system has microphones mounted at the origin and four points of a regular tetrahedron. The newly introduced peak-detecting algorithm can show exact peak position in each channel, in spite of deformation due to reflected walls, loudspeaker and microphone.

  • PDF

Dynamic Response Improvement of Stand Alone Engine-Generator System using Double Voltage Detection Method (전압 이중 검출법에 의한 독립형 엔진-발전기 시스템 응답특성 개선)

  • Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.7
    • /
    • pp.1195-1199
    • /
    • 2008
  • In this paper, peak detector of generator's output voltage and variable gain controller are introduced for a fast dynamic response. The conventional r,m.s, signal detected has inherent time delay, and the dynamic response of generator using conventional PID controller has some problem in sudden load change. In this paper, the peak detector and signal selector with variable gain controller is used to overcome this problem. The main controller can check the voltage state from the peak detector. When a sudden load change, the over-voltage and under-voltage signal from peak detector change the controller's gain and exciter's current reference. The proposed scheme can improve the dynamic response, which is verified from experimental test of 200kW diesel engine-generator.

Adaptive Digital Predictive Peak Current Control Algorithm for Buck Converters

  • Zhang, Yu;Zhang, Yiming;Wang, Xuhong;Zhu, Wenhao
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.613-624
    • /
    • 2019
  • Digital current control techniques are an attractive option for DC-DC converters. In this paper, a digital predictive peak current control algorithm is presented for buck converters that allows the inductor current to track the reference current in two switching cycles. This control algorithm predicts the inductor current in a future period by sampling the input voltage, output voltage and inductor current of the current period, which overcomes the problem of hardware periodic delay. Under the premise of ensuring the stability of the system, the response speed is greatly improved. A real-time parameter identification method is also proposed to obtain the precision coefficient of the control algorithm when the inductance is changed. The combination of the two algorithms achieves adaptive tracking of the peak inductor current. The performance of the proposed algorithms is verified using simulations and experimental results. In addition, its performance is compared with that of a conventional proportional-integral (PI) algorithm.

An Iterative MUSIC-Based DOA Estimation System Using Antenna Direction Control for GNSS Interference

  • Seo, Seungwoo;Park, Youngbum;Song, Kiwon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.4
    • /
    • pp.367-378
    • /
    • 2020
  • This paper introduces the development of the iterative multiple signal classification (MUSIC)-based direction-of-arrival (DOA) estimation system using a rotator that can control the direction of antenna for the global navigation satellite system (GNSS) interference. The system calculates the spatial spectrum according to the noise eigenvector of all dimensions to measure the number of signals (NOS). Also, to detect the false peak, the system adjusts the array antenna's direction and checks the change's peak angles. The phase delay and gain correction values for system calibration are calculated in consideration of the chamber's structure and the characteristics of radio waves. The developed system estimated DOAs of interferences located about 1km away. The field test results show that the developed system can estimate the DOA without NOS information and detect the false peak even though the inter-element spacing is longer than the half-wavelength of the interference.

Generation of Ionospheric Delay in Time Comparison for a Specific GEO Satellite by Using Bernese Software

  • Jeong, Kwang Seob;Lee, Young Kyu;Yang, Sung Hoon;Hwang, Sang-wook;Kim, Sanhae;Song, Kyu-Ha;Lee, Wonjin;Ko, Jae Heon
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.3
    • /
    • pp.125-133
    • /
    • 2017
  • Time comparison is necessary for the verification and synchronization of the clock. Two-way satellite time and frequency (TWSTFT) is a method for time comparison over long distances. This method includes errors such as atmospheric effects, satellite motion, and environmental conditions. Ionospheric delay is one of the significant time comparison error in case of the carrier-phase TWSTFT (TWCP). Global Ionosphere Map (GIM) from Center for Orbit Determination in Europe (CODE) is used to compare with Bernese. Thin shell model of the ionosphere is used for the calculation of the Ionosphere Pierce Point (IPP) between stations and a GEO satellite. Korea Research Institute of Standards and Science (KRISS) and Koganei (KGNI) stations are used, and the analysis is conducted at 29 January 2017. Vertical Total Electron Content (VTEC) which is generated by Bernese at the latitude and longitude of the receiver by processing a Receiver Independent Exchange (RINEX) observation file that is generated from the receiver has demonstrated adequacy by showing similar variation trends with the CODE GIM. Bernese also has showed the capability to produce high resolution IONosphere map EXchange (IONEX) data compared to the CODE GIM. At each station IPP, VTEC difference in two stations showed absolute maximum 3.3 and 2.3 Total Electron Content Unit (TECU) in Bernese and GIM, respectively. The ionospheric delay of the TWCP has showed maximum 5.69 and 2.54 ps from Bernese and CODE GIM, respectively. Bernese could correct up to 6.29 ps in ionospheric delay rather than using CODE GIM. The peak-to-peak value of the ionospheric delay for TWCP in Bernese is about 10 ps, and this has to be eliminated to get high precision TWCP results. The $10^{-16}$ level uncertainty of atomic clock corresponds to 10 ps for 1 day averaging time, so time synchronization performance needs less than 10 ps. Current time synchronization of a satellite and ground station is about 2 ns level, but the smaller required performance, like less than 1 ns, the better. In this perspective, since the ionospheric delay could exceed over 100 ps in a long baseline different from this short baseline case, the elimination of the ionospheric delay is thought to be important for more high precision time synchronization of a satellite and ground station. This paper showed detailed method how to eliminate ionospheric delay for TWCP, and a specific case is applied by using this technique. Anyone could apply this method to establish high precision TWCP capability, and it is possible to use other software such as GIPSYOASIS and GPSTk. This TWCP could be applied in the high precision atomic clocks and used in the ground stations of the future domestic satellite navigation system.

New Parameter on Speech and EGG; Glottal Closure Delay Ratio (음성신호와 전기성문파를 이용하는 새로운 매개변수 ; 성대 폐쇄 지연비율(Glottal Closure Delay Ratio))

  • Choi, Jong-Min;Kwon, Tack-Kyun;Jung, Eun-Jung;Lee, Myung-Chul;Kim, Kwang-Hyun;Sung, Myung-Whun;Park, Kwang-Suk
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.18 no.1
    • /
    • pp.22-25
    • /
    • 2007
  • Background and Objectives: Biomedical signals have been usually used for the diagnosis of the laryngeal function such as speech, electroglottograph(EGG), airflow and other signals. But, in most cases these signals were analysed separately. Here, we propose a new interchannel parameter Glottal Closure Delay Ratio(GCDR) which is estimated from speech and EGG measured simultaneously. Materials and Method: Speech and EGG signal were recorded simultaneously from 13 normal subjects, 39 patients. The patients' data included 16 polyps and 23 vocal folds palsy. Time difference between glottal closing instance on EGG and the first maximum peak on speech in a pitch period was calculated. Glottal closing instance was defined as the maximum peak on the first derivative of EGG signal(dEGG). Results: The standard deviation and jitter were calculated using 20-30 GCDRs extracted from each data, and they are significant different between normal and vocal fold paralysis group. Conclusion: The GCDR may be the first index reflecting speech and EGG characteristics and the perturbation of this parameter was significant different between normal and vocal fold paralysis group.

  • PDF