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ABSTRACT

Time comparison is necessary for the verification and synchronization of the clock. Two-way satellite time and frequency 

(TWSTFT) is a method for time comparison over long distances. This method includes errors such as atmospheric effects, 

satellite motion, and environmental conditions. Ionospheric delay is one of the significant time comparison error in case of 

the carrier-phase TWSTFT (TWCP). Global Ionosphere Map (GIM) from Center for Orbit Determination in Europe (CODE) is 

used to compare with Bernese. Thin shell model of the ionosphere is used for the calculation of the Ionosphere Pierce Point 

(IPP) between stations and a GEO satellite. Korea Research Institute of Standards and Science (KRISS) and Koganei (KGNI) 

stations are used, and the analysis is conducted at 29 January 2017. Vertical Total Electron Content (VTEC) which is generated 

by Bernese at the latitude and longitude of the receiver by processing a Receiver Independent Exchange (RINEX) observation 

file that is generated from the receiver has demonstrated adequacy by showing similar variation trends with the CODE GIM. 

Bernese also has showed the capability to produce high resolution IONosphere map EXchange (IONEX) data compared to the 

CODE GIM. At each station IPP, VTEC difference in two stations showed absolute maximum 3.3 and 2.3 Total Electron Content 

Unit (TECU) in Bernese and GIM, respectively. The ionospheric delay of the TWCP has showed maximum 5.69 and 2.54 ps 

from Bernese and CODE GIM, respectively. Bernese could correct up to 6.29 ps in ionospheric delay rather than using CODE 

GIM. The peak-to-peak value of the ionospheric delay for TWCP in Bernese is about 10 ps, and this has to be eliminated to get 

high precision TWCP results. The 10-16 level uncertainty of atomic clock corresponds to 10 ps for 1 day averaging time, so time 

synchronization performance needs less than 10 ps. Current time synchronization of a satellite and ground station is about 2 

ns level, but the smaller required performance, like less than 1 ns, the better. In this perspective, since the ionospheric delay 

could exceed over 100 ps in a long baseline different from this short baseline case, the elimination of the ionospheric delay 

is thought to be important for more high precision time synchronization of a satellite and ground station. This paper showed 

detailed method how to eliminate ionospheric delay for TWCP, and a specific case is applied by using this technique. Anyone 

could apply this method to establish high precision TWCP capability, and it is possible to use other software such as GIPSY-

OASIS and GPSTk. This TWCP could be applied in the high precision atomic clocks and used in the ground stations of the 

future domestic satellite navigation system.
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1. INTRODUCTION

Time comparison is necessary for the clock verification 

and synchronization (Hwang et al. 2016). Since the optical 

fiber link has restriction in intercontinental case, satellite 
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is used for overseas connections (Fujieda et al. 2014). Two-

way Satellite Time and Frequency Transfer (TWSTFT) is a 

method for time comparison over long baselines (Parker & 

Zhang 2005). Piester et al. (2007) applied this method for 

the cesium fountain clock comparison between Asia and 

Europe. Hwang et al. (2016) analyzed Asia link between 

Korea Research Institute of Standards and Science (KRISS) 

and National Institute of Information and Communications 

Technology (NICT) by using this technique. However, 

TWSTFT shows instabilities due to error sources such as 

atmospheric effects, satellite motion, and environmental 

conditions (Piester et al. 2007). Therefore, these errors have 

to be eliminated for the high precision time comparison. 

Among error sources, ionospheric delay is considered 

significant in the carrier-phase TWSTFT (TWCP) compared 

to code due to high precision (Fujieda et al. 2014).

It is important for the TWCP to eliminate ionospheric 

delay in order to get better results. This is because the clock 

comparison requires high precision. In clock development, 

the uncertainty of the optical clock is much better than 

the low 10-16 level of the cesium fountain clock (Yu et al. 

2017). In addition to this, since the BeiDou system has used 

TWSTFT as the time synchronization method for ground 

stations (Han et al. 2011), the TWCP could be used in the 

development of the future domestic satellite navigation 

system. Moreover, organizations around the world using 

TWCP could establish more precise time comparison 

by applying ionospheric delay elimination technique 

presented in this paper.

Ionospheric delay does not cancelled out due to different 

frequency between uplink and downlink in TWSTFT 

(Fujieda et al. 2014). Total Electron Content (TEC) could be 

estimated on the condition that two downlink frequencies 

available like Global Positioning System (GPS). However, 

it is not possible for TWCP that other sources like Global 

Ionosphere Map (GIM) or regional Vertical Total Electron 

Content (VTEC) map have to be used. Ionospheric delay 

is calculated by using global TEC map of the International 

GNSS Service (IGS) (Parker & Zhang 2005). Piester et al. 

(2007) used GIM from Center for Orbit Determination 

in Europe (CODE). Fujieda et al. (2014) have taken 

into account regional VTEC maps from both the Royal 

Observatory of Belgium and NICT.

It is necessary to calculate Slant Total Electron Content 

(STEC) in order to get ionospheric delay for uplink and 

downlink in time domain. First, Ionosphere Pierce Point 

(IPP) is calculated between stations and Eutelsat 172A, 

and then VTEC at that point is calculated by Bernese 

which is just one of the GNSS data processing software. 

Bernese could generate regional ionosphere model as 

IONosphere map EXchange (IONEX) format by using 

Receiver Independent Exchange (RINEX) observation files 

cleaned during the Precise Point Positioning (PPP) process, 

and the estimation of ionosphere is made by setting the 

main parameter estimation program of Bernese (Dach et 

al. 2015). It is possible for Bernese to generate ionosphere 

by processing a RINEX observation file that was generated 

from a receiver which is not included in the CODE GIM. 

STEC is obtained by multiplying slant factor to this VTEC. 

Ionospheric delay in time domain is obtained by using 

conversion formula according to the signal frequency. 

Finally, ionospheric delay of the TWCP is calculated from 

Bernese and GIM.

The rest of this paper is organized as follows. The method 

of obtaining VTEC by GIM and Bernese is provided in 

Section 2. In Section 3, VTEC values generated by using 

Bernese are compared to those by GIM. In addition to this, 

ionospheric delay of the TWCP for Eutelsat 172A will be 

showed by considering ionosphere thin shell model with 

KRISS and Koganei (KGNI) stations. Finally, in Section 4, 

summarized conclusions are presented.

2. METHOD

Ionosphere reaches from about 50 km to 1000 km with 

vertical profile of the electron density according to the 

altitude, and the ionization is mainly occurred due to the 

extreme ultraviolet and X-ray emission (Komjathy 1997). 

The signals of the GPS satellites are refracted by electrons in 

the ionosphere, and this effect causes signal delays which 

are proportional to total electron content along the signal 

path (Datta-Barua 2008). Thin shell model, which assumes 

nearly all electrons are concentrated at a chosen altitude, 

is used for mapping TEC. TEC is represented in TEC units 

(TECU), and Eq. (1) explains how to convert TEC into 

ionospheric delay in time domain (Fujieda et al. 2014).
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where I is ionospheric delay in time domain, c is the speed of light, f is the signal frequency. For 
Eutelsat 172A, the uplink frequency is 14.314625 GHz, and the downlink frequency is 
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where τ(t) is the times of the reference clocks at station, ωu  and ωd  is uplink and downlink 
signal angular frequency, ϕij is phase information from station i to j, and I is the ionospheric 
delay. 

CODE GIM have 2.5° latitude, 5° longitude, and 1 hour resolution since 19 October 2014 
(Dach et al. 2015). Spatial and temporal interpolation is applied to GIM in order to get VTEC at 
desired latitude, longitude, and time. The IONEX format and interpolation concept is explained 
by Schaer et al. (1998). Fig. 1 shows schematic diagram of the spatial interpolation, and Eq. (3) 
explains how to calculate. Nearest four VTEC are collected first, and then weighting is applied to 
the VTEC according to the distances. As the distance is more nearer, the more weight is counted. 
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Fig. 2.  Schematic diagram of temporal interpolation.

Fig. 3.  Ionosphere thin shell model.

Fig. 1.  Schematic diagram of spatial interpolation.
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height of the thin shell model. From the geometry, earth-

centered angle could be calculated from Eq. (6), and this is 

used to obtain the latitude and the longitude at the IPP.
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where βIPP is the latitude at the IPP, λIPP is the longitude at the IPP, βs is the latitude of the 
station, λs is the longitude of the station, α is the earth-centered angle, and a is the azimuth angle 
of the station. 

Bernese software version 5.2 is used to generate VTEC at desired latitude and longitude by 
using a station. Dach et al. (2015) explains ionosphere modeling and estimation at chapter 13. 
PPP DEMO of the Bernese Processing Engine is used to produce VTEC. The height of single 
layer is selected as 450 km, and the IONEX control file is changed to generate VTEC at desired 
latitude and longitude with 5 min time interval. 

 
3. RESULTS 

 
VTEC is compared at KRISS station location between CODE GIM and Bernese. Fig. 4 

shows these VTEC with 5 min time interval at 29 January 2017. Two graphs show similar trends 
in this day, and this means that Bernese has generated VTEC appropriately. Bernese shows 
different variations between hours compared to the GIM around 19 UT. Since the ionosphere 
variations near 19 UT also showed in the raw data of the receiver from investigation, it is thought 
that the Bernese reflected those variations. In addition to this, the characteristics of the harmonic 
function, which is the ionosphere model of the Bernese, may be added to the ionosphere 
variations according to the setting process of the Bernese. According to the investigation on the 
representative influencing factors such as geomagnetic activity, earthquakes, and volcanoes, it is 
considered that the effects of geomagnetic activity and volcanoes seems to be small on the 
variations near 19 UT. It is necessary to study further on the influences of the earthquakes 
around the Korean Peninsula and other factors for accurate identification. VTEC difference 
between Bernese and GIM is shown in Fig. 5. The maximum difference is about 2.38 TECU in 
absolute value, and the Root Mean Square (RMS) is about 0.92 TECU. Since Bernese generate 
VTEC over the KRISS receiver using the RINEX observation file which is generated by the 
KRISS receiver, Bernese may be more suitable to represent the ionosphere over the KRISS than 
the GIM. In other words, CODE GIM could not accurately represent the ionosphere over the 
receiver of the KRISS because it only uses RINEX files from selected receivers around the world 
that does not include the receiver of the KRISS. The ionosphere over the receiver that used to 
generate the CODE GIM would be more accurate than that of the unused receiver. Although 
GIM gives relatively accurate VTEC, this could not overcome resolution in latitude, longitude, 
and time. On the other hand, Bernese could generate high resolution VTEC with 5 min time 
interval and first prime number in latitude and longitude by setting the IONEX control file. In 
this way, more precise IONEX file could be obtained by setting the IONEX control file in 
Bernese software compared to the IONEX of the GIM. In this perspective, Bernese would be 
suitable to generate high resolution ionosphere data. These gives confidence that Bernese is 
appropriate software to generate VTEC for regional analysis. Ya'acob et al. (2010) showed that 
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Bernese software version 5.2 is used to generate VTEC at 

desired latitude and longitude by using a station. Dach et 

al. (2015) explains ionosphere modeling and estimation at 

chapter 13. PPP DEMO of the Bernese Processing Engine 

is used to produce VTEC. The height of single layer is 

selected as 450 km, and the IONEX control file is changed to 

generate VTEC at desired latitude and longitude with 5 min 

time interval.

3. RESULTS

VTEC is compared at KRISS station location between 

CODE GIM and Bernese. Fig. 4 shows these VTEC with 5 

min time interval at 29 January 2017. Two graphs show 

similar trends in this day, and this means that Bernese has 

generated VTEC appropriately. Bernese shows different 

variations between hours compared to the GIM around 

19 UT. Since the ionosphere variations near 19 UT also 

showed in the raw data of the receiver from investigation, 

it is thought that the Bernese reflected those variations. 

In addition to this, the characteristics of the harmonic 

function, which is the ionosphere model of the Bernese, 

may be added to the ionosphere variations according 

to the setting process of the Bernese. According to the 

investigation on the representative influencing factors 

such as geomagnetic activity, earthquakes, and volcanoes, 

it is considered that the effects of geomagnetic activity 

and volcanoes seems to be small on the variations near 

19 UT. It is necessary to study further on the influences 

of the earthquakes around the Korean Peninsula and 

other factors for accurate identification. VTEC difference 

between Bernese and GIM is shown in Fig. 5. The maximum 

difference is about 2.38 TECU in absolute value, and the 

Root Mean Square (RMS) is about 0.92 TECU. Since Bernese 

generate VTEC over the KRISS receiver using the RINEX 

observation file which is generated by the KRISS receiver, 

Bernese may be more suitable to represent the ionosphere 

over the KRISS than the GIM. In other words, CODE GIM 

could not accurately represent the ionosphere over the 

receiver of the KRISS because it only uses RINEX files from 

selected receivers around the world that does not include 

the receiver of the KRISS. The ionosphere over the receiver 

that used to generate the CODE GIM would be more 

accurate than that of the unused receiver. Although GIM 

Fig. 4.  VTEC over the KRISS station from Bernese and GIM on 29 January 
2017.

Fig. 5.  VTEC difference over the KRISS station between Bernese and GIM 
on 29 January 2017.
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gives relatively accurate VTEC, this could not overcome 

resolution in latitude, longitude, and time. On the other 

hand, Bernese could generate high resolution VTEC with 

5 min time interval and first prime number in latitude and 

longitude by setting the IONEX control file. In this way, 

more precise IONEX file could be obtained by setting the 

IONEX control file in Bernese software compared to the 

IONEX of the GIM. In this perspective, Bernese would be 

suitable to generate high resolution ionosphere data. These 

gives confidence that Bernese is appropriate software to 

generate VTEC for regional analysis. Ya'acob et al. (2010) 

showed the availability of the Bernese 5.0 in the generation 

of the TEC map over single receiver station by analyzing 

with CODE GIM. Abdullah et al. (2008) stated that Bernese 

5.0 can be used to determine TEC over single station 

through the IGS station analysis with IGS GIM. Todorova et 

al. (2003) demonstrated that the regional ionosphere model 

from the Bernese 4.2 shows a good agreement with different 

sources such as GIM, very long baseline interferometry, and 

TOPEX/Poseidon satellite.

Position information of the KRISS and KGNI station are 

given in Table 1. Although the IPP is located somewhat 

distant from each stations, it is stated that single station 

could observe to the 1270 km on the condition that 

elevation cutoff angle is 15° and single layer height is 450 km 

(Alcay 2016). Alcay (2016) has called this as coverage circle, 

and analyzed ionosphere variation related with earthquake 

by generating regional ionosphere map from single station 

with Bernese 5.0. These gives prove of adequacy to the 

Bernese software in the calculation of the VTEC at IPP.

Fig. 4 shows VTEC at the latitude and longitude of the 

KRISS receiver by processing KRISS data. In contrast, Fig. 6 

shows VTEC at the latitude and longitude of the IPP between 

KRISS and GEO by processing KRISS data. Similarly, Fig. 7 

shows VTEC at the latitude and longitude of the IPP between 

KGNI and GEO by processing KGNI data. The longitude 

difference between KRISS receiver and GEO IPP is 6.7°, and 

this is corresponds to about 27 minutes in time theoretically. 

This difference was represented as the shift on the time axis, 

as shown in between Figs. 4 and 6. Figs. 6 and 7 shows VTEC 

at each station IPP, and they have similar variation trends 

between Bernese and GIM. In case KRISS, two methods show 

almost same VTEC, but they show significant differences 

at time interval around 19 UT as shown in Fig. 4. KGNI 

shows overall agreement in variation pattern. Fig. 8 shows 

VTEC difference between Bernese and GIM at each station 

IPP. KRISS has showed about 4.14 TECU in absolute value, 

and this is larger than about 2.62 TECU of the KGNI. This 

is mainly due to the time interval around 19 UT at KRISS. 

However, the RMS of the KRISS is about 1.03 TECU, and this 

is smaller than about 1.58 TECU of the KGNI. Fig. 9 shows 

Fig. 6.  IPP VTEC of the KRISS from Bernese and GIM on 29 January 2017.

Fig. 8.  IPP VTEC difference between Bernese and GIM from KRISS and KGNI 
on 29 January 2017.

Fig. 7.  IPP VTEC of the KGNI from Bernese and GIM on 29 January 2017.

Table 1.  Position of the KRISS and KGNI.

Position
KRISS KGNI

Latitude
(degree)

Longitude
(degree)

Latitude
(degree)

Longitude
(degree)

Station
IPP

36.4
32.8

127.4
134.1

35.7
32.3

139.5
143.8
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VTEC difference between KRISS and KGNI at each IPP from 

Bernese and GIM. Bernese has showed maximum 3.3 TECU 

in absolute value with about 1.33 TECU at RMS, and these are 

larger than about 2.3 and 0.92 TECU of the GIM each. This 

difference between KRISS and KGNI would be represented as 

ionospheric delay in TWCP.

Ionospheric delay in TWCP is shown in Fig. 10. Bernese 

has showed from -4.77 to 5.69 ps, but GIM has showed from 

-1.53 to 2.54 ps. This means that ionospheric delay could 

reach up to 5.69 and 2.54 ps in Bernese and GIM each, and 

this indicates that results of the TWCP could be corrected 

by this amount. Fig. 11 shows ionospheric delay difference 

between Bernese and GIM in TWCP. The maximum is 

about 6.29 ps in absolute value, and the RMS is about 2.67 

ps. This indicates that Bernese could correct the results of 

the TWCP with 6.29 ps rather than using GIM. Since VTEC 

at each station IPP was similar, the ionospheric delay in 

TWCP was also small. This may due to the short baseline 

distance between KRISS and KGNI. If the two region shows 

large different ionosphere states, ionosphere effect in 

TWCP would be large. Fujieda et al. (2014) stated that the 

measurement precision of the TWCP expected to be three 

orders of magnitude better than about 0.5 ns of the TWSTFT. 

Because of this high precision of the TWCP, the effect of the 

ionosphere has become significant. Therefore, TWCP has 

to remove the ionospheric delay rather than ignore that as 

in conventional TWSTFT. As for the TWCP link between 

NICT and Physikalisch-Technische Bundesanstalt, the 

ionospheric delay is over 100 ps (Fujieda et al. 2014). They 

explained that this is because of the local time difference 

and low elevation angle due to a very long baseline. In our 

case, the ionospheric delay of the Bernese for TWCP could 

be about 10 ps in peak-to-peak value. This is relatively 

small value rather than aforementioned, but it is still 

important to remove this amount of the ionospheric delay 

due to high precision of the TWCP. Furthermore, since the 

ionosphere of the KGNI could be changed significantly due 

to environmental effect like earthquakes, the ionospheric 

delay of the TWCP could be large.

4. CONCLUSIONS

In this paper, we presented a method of generating 

ionospheric delay for time comparison for a GEO satellite by 

using Bernese. The results has showed software adequacy 

with RMS as 0.92 TECU when compared with CODE GIM, 

and this has indicated suitability in the representation of 

the ionosphere for a specific receiver. Bernese has definite 

advantages in latitude, longitude, and time resolution 

compared to the GIM. At each station IPP, VTEC difference 

between KRISS and KGNI showed absolute maximum 3.3 

and 2.3 TECU in Bernese and GIM, respectively. The overall 

VTEC differences of the two regions are small due to short 

baseline, and these amount are represented as ionospheric 

Fig. 9.  IPP VTEC difference between KRISS and KGNI from Bernese and GIM 
on 29 January 2017.

Fig. 10.  Ionospheric delay of the TWCP from Bernese and GIM on 29 
January 2017.

Fig. 11.  Ionospheric delay difference of the TWCP between Bernese and 
GIM on 29 January 2017.
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delay in TWCP. Ionospheric delay reached up to maximum 

5.69 ps in Bernese, and the GIM has showed 2.54 ps. This 

means that Bernese could correct TWCP results with 5.69 

ps. Moreover, Bernese could correct ionospheric delay 

up to 6.29 ps rather than using GIM in this day. Bernese 

is more suitable than CODE GIM in two perspectives. 

First, it generate ionospheric delay by processing RINEX 

observation file which is generated by the installed receiver 

at that location. Second, high resolution IONEX file could 

be obtained by setting the IONEX control file in Bernese 

compared to the IONEX file of the CODE GIM. However, 

CODE GIM also could be used for TWCP, and future studies 

could apply this approach using other software such as 

GIPSY-OASIS and GPSTk.

This paper has provided detailed description of how to 

obtain ionospheric delay between two locations, and this 

method is applied in a practical case. In this case study, the 

ionospheric delay of the Bernese is about 10 ps in peak-

to-peak value. In atomic clock, the 10-16 level uncertainty 

corresponds to approximately 10 ps for 1 day averaging time, 

therefore the time synchronization performance requires 

less than 10 ps. Currently, a satellite and ground station is 

synchronized within approximately 2 ns, but the smaller 

the required performance, such as 1 ns or less, the better. 

Since the ionospheric delay could exceed over 100 ps in a 

long baseline unlike 10 ps in this relatively short baseline, 

it is considered important to compensate the ionospheric 

delay for more precise time synchronization of a satellite and 

ground control station. Although one specific case has been 

shown in this research, it has been shown that anyone could 

eliminate the ionospheric delay for the TWCP between two 

organizations at the receiver installed location. By using this 

technique, an organization could get high precision time 

comparison capability. Further, this high precision TWCP 

method could be used to compare atomic clocks, and also 

applied in the ground stations for the development of the 

future domestic satellite navigation system.
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