• Title/Summary/Keyword: peak current mode control

Search Result 66, Processing Time 0.027 seconds

Critical Conduction Mode Bridgeless PFC Converter Based on a Digital Control (디지털 제어 기반의 경계점모드 브릿지리스 PFC 컨버터)

  • Kim, Tae-Hun;Lee, Woo-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2000-2007
    • /
    • 2016
  • Generally, in order to implement the CRM(Critical Conduction Mode), the analog controller is used rather than a digital controller because the control is simple and uses less power. However, according to the semiconductor technology development and various user needs, digital control system based on a DSP is on the rise. Therefore, in this paper, the CRM bridgeless PFC converter based on a digital control is proposed. It is necessary to detect the inductor current when it reaches zero and peak value, for calculating the on time and off time by using the current information. However, in this paper, the on-time and off-time are calculated by using the proposed algorithm without any current information. If the switching-times are calculated through the steady-state analysis of the converter, they do not reflect transient status such as starting-up. Therefore, the calculated frequency is out of range, and the transient current is generated. In order to solve these problems, limitation method of the on-time and off-time is used, and the limitation values are varied according to the voltage reference. In addition, in steady state, depending on the switching frequency, the inductance is varied because of the resonance between the inductor and the parasitic capacitance of the switching elements. In order to solve the problem, inductance are measured depending on the switching frequency. The measured inductance are used to calculate the switching time for preventing the transient current. Simulation and experimental results are presented to verify the proposed method.

A High-efficiency Method to Suppress Transformer Core Imbalance in Digitally Controlled Phase-shifted Full-bridge Converter

  • Yu, Juzheng;Qian, Qinsong;Sun, Weifeng;Zhang, Taizhi;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.823-831
    • /
    • 2016
  • A high-efficiency method is proposed to suppress magnetic core imbalance in phase-shifted full-bridge (PSFB) converters. Compared with conventional solutions, such as controlling peak current mode (PCM) or adding DC blocking capacitance, the proposed method has several advantages, such as lower power loss and smaller size, because the additional current sensor or blocking capacitor is removed. A time domain model of the secondary side is built to analyze the relationship between transformer core imbalance and cathode voltage of secondary side rectifiers. An approximate control algorithm is designed to achieve asymmetric phase control, which reduces the effects of imbalance. A 60 V/15 A prototype is built to verify the proposed method. Experimental results show that the numerical difference of primary side peak currents between two adjacent cycles is suppressed from 2 A to approximately 0 A. Meanwhile, compared with the PCM solution, the efficiency of the PSFB converter is slightly improved from 93% to 93.2%.

Single-Stage Double-Buck Topologies with High Power Factor

  • Pires, Vitor Fernao;Silva, Jose Fernando
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.655-661
    • /
    • 2011
  • This paper presents two topologies for single-stage single-phase double-buck type PFC converters, designed to operate at high power factor, near sinusoidal input currents and adjustable output voltage. Unlike the known buck type PFC topologies, in which the output voltage is always lower than the maximum input voltage, the proposed converters can operate at output voltages higher than the ac input peak voltage. A reduced number of switches on the main path of the current are another characteristic of the two proposed topologies. To shape the input line currents, a fast and robust controller based on a sliding mode approach is proposed. This active non-linear control strategy, applied to these converters allows high quality input currents. A Proportional Integral (PI) controller is adopted to regulate the output voltage of the converters. This external voltage controller modulates the amplitude of the sinusoidal input current references. The performances of the presented rectifiers are verified with experimental results.

A Study on the Metal Transfer and Spatter Generation in High Current $CO_2$ Welding (고전류 $CO_2$용접에서의 금속이행 및 스패터 발생 현상에 관한 연구)

  • 김남훈;유회수;김희진;고진현
    • Journal of Welding and Joining
    • /
    • v.21 no.3
    • /
    • pp.51-57
    • /
    • 2003
  • The metal transfer in $CO_2$ welding shows the transition of transfer mode from short-circuiting to repelled transfer will the increase of welding current. While the short-circuiting mode in $CO_2$ welding has been studied very extensively relating with droplet formation and spatter generation, the repelled transfer has little been understood. In this study, high current $CO_2$ welding has been performed with bead-on-plate welds along with the waveform analyzer and high speed camera. The image of high speed camera was synchronized with its waveform so that the moment of spatter generation could be realized during drop detachment. As a results of this study, it was found that welding arc changes its location either once or three times and thus single or double pulse signals were developed in the voltage waveform. Whenever the arc moved its location, new arc was developed in a explosive way and thus it caused spatter generation. Specially severe spattering took place when the waveform showed a double-peak pattern. As a consequence of these results, new waveform control techniques could be suggested for suppressing the spatter generation in the high-current $CO_2$ welding.

Common-mode Voltage Reduction of Three Level Four Leg PWM Converter (3레벨 4레그 PWM 컨버터의 커먼 모드 전압 저감)

  • Chee, Seung-Jun;Ko, Sanggi;Kim, Hyeon-Sik;Sul, Seung-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.488-493
    • /
    • 2014
  • This paper presents a carrier-based pulse-width modulation(PWM) method for reducing the common-mode voltage of a three-level four-leg converter. The idea of the proposed PWM method is intuitive and easy to be implemented in digital signal processor-based converter control systems. On the basis of the analysis of space-vector PWM(SVPWM) and sinusoidal PWM(SPWM) switching patterns, the fourth leg pole voltage of the three-phase converter called "f leg pole voltage" is manipulated to reduce the common-mode voltage. To synthesize f leg pole voltage for the suppression of the common-mode voltage, positive and negative pole voltage references of f leg are calculated. An offset voltage is also deduced to prevent the distortion of a, b, and c phase voltages. The feasibility of the proposed PWM method is verified by simulation and experimental results. The common-mode voltage of the proposed PWM method in peak-to-peak value is 33% in comparison with that of the conventional SVPWM method. The transition number of the common-mode voltage is also reduced to 25%.

Optimal Excitation Angles of a Switched Reluctance Generator for Maximum Output Power

  • Thongprasri, Pairote;Kittiratsatcha, Supat
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1527-1536
    • /
    • 2014
  • This paper investigates the optimal values of turn-on and turn-off angles, and ratio of flux linkage at turn-off angle and peak phase current positions of optimal control for accomplishing maximum output power in an 8/6 Switched Reluctance Generator (8/6 SRG). Phase current waveform is analyzed to determine optimal excitation angles (optimal turn-on and turn-off angles) of the SRG for maximum output power which is applied from a nonlinear magnetization curve in terms of control variables (dc bus voltage, shaft speed, and excitation angles). The optimal excitation angles in single pulse mode of operation are proposed via the analytical model. Simulated and experimental results have verified the accuracy of the analytical model.

Transformer-Reuse Reconfigurable Synchronous Boost Converter with 20 mV MPPT-Input, 88% Efficiency, and 37 mW Maximum Output Power

  • Im, Jong-Pil;Moon, Seung-Eon;Lyuh, Chun-Gi
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.654-664
    • /
    • 2016
  • This paper presents a transformer-based reconfigurable synchronous boost converter. The lowest maximum power point tracking (MPPT)-input voltage and peak efficiency of the proposed boost converter, 20 mV and 88%, respectively, were achieved using a reconfigurable synchronous structure, static power loss minimization design, and efficiency boost mode change (EBMC) method. The proposed reconfigurable synchronous structure for high efficiency enables both a transformer-based self-startup mode (TSM) and an inductor-based MPPT mode (IMM) with a power PMOS switch instead of a diode. In addition, a static power loss minimization design, which was developed to reduce the leakage current of the native switch and quiescent current of the control blocks, enables a low input operation voltage. Furthermore, the proposed EBMC method is able to change the TSM into IMM with no additional time or energy loss. A prototype chip was implemented using a $0.18-{\mu}m$ CMOS process, and operates within an input voltage range of 9 mV to 1 V, and an output voltage range of 1 V to 3.3 V, and provides a maximum output power of 37 mW.

Dual Mode Buck Converter Capable of Changing Modes (모드 전환 제어 가능한 듀얼 모드 벅 변환기)

  • Jo, Yong-min;Lee, Tae-Heon;Kim, Jong-Goo;Yoon, Kwang Sub
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.10
    • /
    • pp.40-47
    • /
    • 2016
  • In this paper, a dual mode buck converter with an ability to change mode is proposed, which is suitable particularly for portable device. The problem of conventional mode control circuit is affected by load variation condition such as suddenly or slowly. To resolve this problem, the mode control was designed with slow clock method. Also, when change from the PFM(Pulse Frequency Modulation) mode to the PWM(Pulse Width Modulation) mode, to use the counter to detect a high load. And the user can select mode transition point in load range from 20mA to 90mA by 3 bit digital signal. The circuits are implemented by using BCDMOS 0.18um 2-polt 3-metal process. Measurement environment are input voltage 3.7V, output voltage 1.2V and load current range from 10uA to 500mA. And measurement result show that the peak efficiency is 86% and ripple voltage is less 32mV.

Design of PFM Boost Converter with Dual Pulse Width Control (이중 펄스 폭을 적용한 PFM 부스트 변환기 설계)

  • Choi, Ji-San;Jo, Yong-Min;Lee, Tae-Heon;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.9
    • /
    • pp.1693-1698
    • /
    • 2015
  • This paper proposed a PFM(pulse-frequency modulator) boost converter which has dual pulse-width. The PFM boost converter is composed of BGR(band gap voltage reference generating circuit), voltage reference generating circuit, soft-start circuit, error amplifier, high-speed comparator, inductor current sensing circuit and pulse-width generator. Converter has different inductor peak current so it has wider load current range and smaller output voltage ripple. Proposed PFM boost converter generates 18V output voltage with input voltage of 3.7V and it has load current range of 0.1~300mA. Simulation results show 0.43% output voltage ripple at ligh load mode and 0.79% output voltage ripple at heavy load mode. Converter has efficiency 85% at light lode mode and it has maximum 86.4% at 20mA load current.

Bridgeless Buck PFC Rectifier with Improved Power Factor

  • Malekanehrad, Mahdi;Adib, Ehsan
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.323-331
    • /
    • 2018
  • Buck power factor correction (PFC) converters, compared with conventional boost PFC converters, exhibit high efficiency performance in the entire range of universal line voltage. This feature has gotten more attention for eliminating the zero crossing dead angle of buck PFC rectifiers. Furthermore, bridgeless structures for the reduction of conduction losses have been proposed. The aim of this paper is to introduce a single-phase buck rectifier that simultaneously has unity power factor (PF) and bridgeless structure while operating in the continuous conduction mode (CCM). For this purpose, two auxiliary flyback converters without any active switches are applied to a bridgeless buck rectifier to eliminate the zero crossing dead angle and achieve unity power factor, low total harmonic distortion (THD) and high efficiency. The operation and design considerations of the proposed rectifier are verified on a 150W, 48V prototype using a conventional peak-current-mode control. The measurement results show that the proposed rectifier has nearly unity power factor, THD less than 7% and high efficiency.