• Title/Summary/Keyword: pavement type

Search Result 245, Processing Time 0.029 seconds

Assessment of Applicability of Waste Vinyl Asphalt Concretes (폐비닐 아스팔트 콘크리트의 현장 적응성 연구)

  • Kim, Kwang-Woo;Li, Xiang-Fan;Lee, Soon-Jae;Kim, Sung-Un
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.111-114
    • /
    • 2001
  • This study is a fundamental research for recycling waste vinyl in asphalt concrete mixture for roadway pavement. The mixing method and proper content of waste polyethylene(PE) film were determined through preliminary mix design. This study used 2-type aggregate gradations and two-type waste PE films. The mixtures were applied for a test pavement on a rural road. Quality evaluation of the asphalt concrete confirmed that waste vinyl asphalt concrete was applicable to road pavement.

  • PDF

A Study on Improvement of the Shape and Performance of Raised Pavement Marker (도로표지병의 형태 및 기능 개선에 관한 연구)

  • Kim, Sang-Bum;Kwon, Yong-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.6 s.78
    • /
    • pp.82-87
    • /
    • 2006
  • The existing raised pavement marker, however, have some limitations. Most of them are square-shaped which makes only forward and backward retro-reflection, their orientation can be easily changed by impact of vehicle, and the surface reflector can be readily contaminated leading poor functioning. In addition, maintenance for broken raised pavement marker is not easy. The purpose of the study is to design and manufacture a new and improved type of raised pavement marker. The new raised pavement marker has round-shaped upper structure. Its body was separated from the holder and the reflector was surrounded by acrylic cover. We tested performances of the constituent parts, optimum load after installation, and reflection efficiency. The new raised pavement marker will be an initiation of studies on the improvement of the shape and performance of raised pavement markers.

Experimental and Numerical Analysis of Warm Mix Asphalt Pavement prepared using Steel Slag and RAP (제강슬래그와 폐아스팔트를 활용한 중온 아스팔트 포장의 거동 분석)

  • Lee, Hojoung;Jang, Dongbok;Kim, Hyunwook;Kim, In-TaI;Kim, Kibyung;Lee, Jaehoon
    • International Journal of Highway Engineering
    • /
    • v.19 no.2
    • /
    • pp.55-65
    • /
    • 2017
  • PURPOSES : This study aimed to analyze the experimental and numerical behavior of warm mix asphalt pavement prepared using steel slag and RAP and to conduct economic analysis of pavement construction. METHODS : For developing high performance asphalt pavement, we performed three evaluations: fundamental analysis, experimental testing, and 3D finite element analysis. In particular, 3D finite element analysis was conducted on several pavement structures by adopting the results of experimental tests. RESULTS : Through the various evaluations, it was established that steel slag was effective for use as asphalt mixture aggregate. Moreover, asphalt mixture constituting steel slag and RAP demonstrated higher performance behavior compared with conventionally used asphalt mixture. Furthermore, based on the 3D FE modeling, we established that the developed asphalt pavement constituting steel slag and RAP can be utilized for thin layer pavement with comparable performance behavior. CONCLUSIONS :Warm mix asphalt pavement prepared using steel slag and RAP is more competitive and economic compared to hot-mix asphalt pavement. Moreover, it can be applied for preparing thin layer asphalt pavements with reasonable performance. The developed warm mix asphalt pavement prepared using steel slag and RAP can be an alternative pavement type with competitive performance based on the reasonable economic benefit it provides.

Change of Road Surface Design and Perception of Streetscape in Urban Areas (노면 디자인 차이가 가로경관 인식에 미치는 영향)

  • Hoyeon Lim;ChoHye Youn;Sangbin Han;Yeowon Lee;Juyoung Lee
    • Journal of Environmental Science International
    • /
    • v.33 no.2
    • /
    • pp.169-178
    • /
    • 2024
  • This study aimed to investigate the impact of pavement design changes on user perceptions, with the objective of enhancing safety in urban streetscape. A total of 72 participants were recruited, and the study focused on alleyways in areas with a high risk of crime. Employing the Semantic Differential (SD) methodology, an assessment was conducted to gauge participants' perceptions of three different pavement types (A-type, B-type, C-type) as well as the existing pavement. The results indicated that the C-type pavement, characterized by vibrant and harmonious color palettes and patterns, elicited the highest levels of perceived safety, comfort, and openness among users. This signifies that physical environmental improvements through color design can mitigate the feelings of insecurity and foster emotional stability. Therefore it is recommended to implement various color schemes and pattern designs to road surface for enhancing user safety in high-risk urban areas.

Evaluating the performance AASHTOWare's mechanistic-empirical approach for roller-compacted concrete roadways

  • Emin Sengun
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.445-469
    • /
    • 2024
  • The Federal Highway Administration (FHWA) has recommended the use of AASHTOWare Pavement Mechanistic-Empirical Design (PMED) software for Roller-Compacted Concrete (RCC) pavement design, but specific calibration for RCC is missing. This study investigates the software's capacity to predict the long-term performance of RCC roadways within the framework of conventional concrete pavement calibration. By reanalyzing existing RCC projects in several U.S. states: Colorado, Arkansas, South Carolina, Texas, and Illinois, the study highlights the need for specific calibration tailored to the unique characteristics of RCC. Field observations have emphasized occurrence of early distresses in RCC pavements, particularly transverse-cracking and joint-related issues. Despite data challenges, the AASHTOWare PMED software exhibits notable correlation between its long-term predictions and actual field performance in RCC roadways. This study stresses that RCC applications with insufficient joint spacing and thickness are prone to premature cracking. To enhance the accuracy of RCC pavement design, it is essential to discuss the inclusion of RCC as a dedicated rigid pavement option in AASHTOWare PMED. This becomes particularly crucial when the rising popularity of RCC roadways in the U.S. and Canada is considered. Such an inclusion would solidify RCC as a viable third option alongside Jointed Plain Concrete Pavements (JPCP) and Continuously Reinforced Concrete Pavements (CRCP) for design and deployment of rigid pavements. The research presents a roadmap for future calibration endeavors and advocates for the integration of RCC pavement as a distinct pavement type within the software. This approach holds promise for achieving more precise RCC pavement design and performance predictions.

Development of Prediction Method for Highway Pavement Condition (포장상태 예측방법 개선에 관한 연구)

  • Park, Sang-Wook;Suh, Young-Chan;Chung, Chul-Gi
    • International Journal of Highway Engineering
    • /
    • v.10 no.3
    • /
    • pp.199-208
    • /
    • 2008
  • Prediction the performance of pavement provides proper information to an agency on decision-making process; especially evaluating the pavement performance and prioritizing the work plan. To date, there are a number of approaches to predict the future deterioration of pavements. However, there are some limitation to proper prediction of the pavement service life. In this paper, pavement performance model and pavement condition prediction model are developed in order to improve pavement condition prediction method. The prediction model of pavement condition through the regression analysis of real pavement condition is based on the probability distribution of pavement condition, which set to 5%, 15%, 25% and 50%, by condition of the pavement and traffic volume. The pavement prediction model presented from the behavior of individual pavement condition which are set to 5%, 15%, 25% and 50% of probability distribution. The performance of the prediction model is evaluated from analyzing the average, standard deviation of HPCI, and the percentage of HPCI which is lower than 3.0 of comparable section. In this paper, we will suggest the more rational method to determine the future pavement conditions, including the probabilistic duration and deterministic modeling methods regarding the impact of traffic volume, age, and the type of the pavement.

  • PDF

Improvement of a Decision Tree for The Rehabilitation of Asphalt Pavement in City Road (도심지 아스팔트 포장의 유지보수공법 의사결정 절차 개선)

  • Park, Chang Kyu;Kim, Won Jae;Kim, Tae Woo;Lee, Jin Wook;Baek, Jong Eun;Lee, Hyun Jong
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.27-37
    • /
    • 2018
  • PURPOSES : The objective of this study is to develop a pavement rehabilitation decision tree considering current pavement condition by evaluating severity and distress types such as roughness, cracking and rutting. METHODS : To improve the proposed overall rehabilitation decision tree, current decision tree from Korea and decision trees from other countries were summarized and investigated. The problem when applying the current rehabilitation method obtained from the decision tree applied in Seoul was further analyzed. It was found that the current decision trees do not consider different distress characteristics such as crack type, road types and functions. Because of this, different distress values for IRI, crack rate and plastic deformation was added to the proposed decision tree to properly recommend appropriate pavement rehabilitation. Utilizing the 2017 Seoul pavement management system data and considering all factors as discussed, the proposed overall decision tree was revised and improved. RESULTS :In this study, the type of crack was included to the decision tree. Meanwhile current design thickness and special asphalt mixture were studied and improved to be applied on different pavement condition. In addition, the improved decision tree was incorporated with the Seoul asphalt overlay design program. In the case of Seoul's rehabilitation budget, rehabilitation budget can be optimized if a 25mm milling and overlay thickness is used. CONCLUSIONS:A practical and theoretical evaluation tool in pavement rehabilitation design was presented and proposed for Seoul City.

Simplified approach for the evaluation of critical stresses in concrete pavement

  • Vishwakarma, Rameshwar J.;Ingle, Ramakant K.
    • Structural Engineering and Mechanics
    • /
    • v.61 no.3
    • /
    • pp.389-396
    • /
    • 2017
  • Concrete pavements are subjected to traffic and environmental loadings. Repetitive type of such loading cause fatigue distress which leads to failure by forming cracks in pavement. Fatigue life of concrete pavement is calculated from the stress ratio (i.e. the ratio of applied flexural stress to the flexural strength of concrete). For the correct estimation of fatigue life, it is necessary to determine the maximum flexural tensile stress developed for practical loading conditions. Portland cement association PCA (1984) and Indian road congress IRC 58 (2015) has given charts and tables to determine maximum edge stresses for particular loading and subgrade conditions. It is difficult to determine maximum stresses for intermediate loading and subgrade conditions. The main purpose of this study is to simplify the analysis of rigid pavement without compromising the accuracy. Equations proposed for determination of maximum flexural tensile stress of pavement are verified by finite element analysis.

Field Working Data Analysis of Sludge Suction Type Pavement cutter to Reduce Scattered Dust (비산먼지 저감을 위한 슬러지 흡입식 도로절단기의 현장 작업 데이터 분석)

  • Kim, Kyoon-Tai;Jun, Younghun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.231-232
    • /
    • 2022
  • Pavement cutting work frequently occurs in new building construction, reconstruction, and complex construction, and this work causes a lot of noise and dust. Eco-friendly pavement cutters are being developed to reduce noise and dust in this work, however the on-site cutting performance of the equipment under development has not been quantified. In this study, the eco-friendly pavement cutter was applied to four residential areas in Seoul and Gyeonggi-do, and its cutting performance was quantified. As a result of the analysis, the eco-friendly pavement cutter showed cutting performance of 20.1~46.9sec/m, and the average was 33.5sec/m. In the future, we plan to conduct additional cutting experiments with various mixing ratios, materials, and depths to confirm the performance of eco-friendly road cutters in more detail.

  • PDF

A Case Study for the Estimation of Remaining Lives of Asphalt Pavements (아스팔트포장 잔존수명 예측 사례 연구)

  • Lee, Jung-Hun;Lee, Hyun-Jong;Park, Hee-Mun;Kim, In-Tai
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-13
    • /
    • 2008
  • This study presents a case study of condition evaluation of various asphalt pavement sections to estimate performance lives. The pavement surface conditions including cracking and rutting are first evaluated using a automatic pavement analyzer, ARAN. HPCI(Highway Pavement Condition Index) values are estimated using the pavement surface distress data. It is observed from the pavement distress survey that the major distress type of the sections is top-down cracking. The modulus value of each pavement layer is back-calculated from the defection data obtained from a FWD(Falling Weight Deflectometer) and compared with the laboratory measured dynamic modulus values. Remaining lives of the various pavement sections are estimated based on a mechanistic-empirical approach and AAHTO 1993 design guide. The structural capacities of the all pavement sections based on the two approaches are strong enough to maintain the pavement sections for the rest of design life. Since the major distress type is top-down cracking, the remaining lives of the pavement sections are estimated based on HPCI and existing performance database of highway pavements. To evaluate the causes of premature pavement distress, various material properties, such as air void, asphalt binder content, aggregate gradation, dynamic modulus and fatigue resistance, are measured from the field cores. It is impossible to accurately estimate the binder contents of field samples using the ignition method. It is concluded from the laboratory tests that the premature top down cracking is mainly due to insufficient compaction and inadequate aggregate gradation.

  • PDF