• 제목/요약/키워드: pattern recognition neural network

검색결과 489건 처리시간 0.028초

패턴인식을 위한 일반화된 이차신경망 구현 (An Implementation of Generalized Second-Order Neural Networks for Pattern Recognition)

  • 이봉규;양요한
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제51권10호
    • /
    • pp.446-452
    • /
    • 2002
  • For most of pattern recognition applications, it is required to correctly recognize patterns even if they have translation variations. In this paper, to achieve the goal of translation invariant pattern recognition, we propose a new generalized translation invariant second-order neural network using a constraint on the weights. The weight constraint is implemented using generalized translation invariant features which are accumulated sums of pixel combinations. Simulation results will be given to demonstrate that the proposed second-order neural network has the generalized translation invariant property.

HFPD 및 신경회로망을 이용한 고압 유도전동기 모델코일 열화진단 (Aging Diagnosis of Model Coil of HV Induction Motor Using HFPD and Neural Networks)

  • 김덕근;임장섭;여인선
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제51권8호
    • /
    • pp.361-367
    • /
    • 2002
  • Many failures in high voltage equipment are preceded by partial discharge activity. In this paper deals with the application of the high frequency partial discharge measurement technique in motorette. HFPD measurement is very effective method to detect the PD occurred in motorette which is the called name of test specimen for accelerating test of stator winding[1] In this study, CT type HFPD sensor is used to detect the partial discharges and a measured HFPD pattern is analyzed by fractal mathematics. The neural network algorithm is used to pattern recognition and ageing diagnosis. As a result of this study, the fractal dimensions are increased along to applied voltage and HFPD pattern recognition using neural network shown excellent recognition rate. Also, the ageing diagnosis of motorette has been Possible.

Scanning Acoustic Tomograph 방식을 이용한 지능형 반도체 평가 알고리즘 (The Intelligence Algorithm of Semiconductor Package Evaluation by using Scanning Acoustic Tomograph)

  • 김재열;김창현;송경석;양동조;장종훈
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.91-96
    • /
    • 2005
  • In this study, researchers developed the estimative algorithm for artificial defects in semiconductor packages and performed it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Backpropagation Neural Network. Self-Organizing Map and Backpropagation Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages: Crack, Delamination and Normal. According to the results, we were confirmed that estimative algorithm was provided the recognition rates of $75.7\%$ (for Crack) and $83_4\%$ (for Delamination) and $87.2\%$ (for Normal).

  • PDF

OCR Application By a FPGA Programming AND/OR Neural Network

  • Park, Pyong-Sik;Kim, Gwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.42.4-42
    • /
    • 2002
  • With the research of simplified neural networks, we propose an AND/OR neural network; a kind of brief, fast network Then, we present an OCR solution that equip the network in one-chip FPGA and design it by using HDL. We selected the representative hexadecimal character as the recognition feature class and used a Feature Vector Recognition Method in the statistic pattern recognition. The result feature vector was encoded into a 7 bit array and inputted into the AND/OR network to finish learning.

  • PDF

패턴인식을 위한 다층 신경망의 디지털 구현에 관한 연구 (A Study on the Digital Implementation of Multi-layered Neural Networks for Pattern Recognition)

  • 박영석
    • 융합신호처리학회논문지
    • /
    • 제2권2호
    • /
    • pp.111-118
    • /
    • 2001
  • 본 연구에서는 패턴 인식용 다층 퍼셉트론 신경망을 순수 디지털 논리회로 모델로 구현할 수 있도록 새로운 논리뉴런의 구조, 디지털 정형 다층논리신경망 구조, 그리고 패턴인식의 응용을 위한 다단 다층논리 신경망 구조를 제안하고, 또한 제안된 구조는 매우 단순하면서도 효과적인 증가적인 가법적(Incremental Additive) 학습알고리즘이 존재함을 보였다.

  • PDF

Speech Recognition by Neural Net Pattern Recognition Equations with Self-organization

  • Kim, Sung-Ill;Chung, Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • 제22권2E호
    • /
    • pp.49-55
    • /
    • 2003
  • The modified neural net pattern recognition equations were attempted to apply to speech recognition. The proposed method has a dynamic process of self-organization that has been proved to be successful in recognizing a depth perception in stereoscopic vision. This study has shown that the process has also been useful in recognizing human speech. In the processing, input vocal signals are first compared with standard models to measure similarities that are then given to a process of self-organization in neural net equations. The competitive and cooperative processes are conducted among neighboring input similarities, so that only one winner neuron is finally detected. In a comparative study, it showed that the proposed neural networks outperformed the conventional HMM speech recognizer under the same conditions.

뉴우럴 네트워크에 의한 부분방전 패턴 인식 (Partial Discharge Pattern Recognition using Neural Network)

  • 이준호;수적직유;강본달희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1304-1306
    • /
    • 1995
  • In this study, a neural network algorithm through a data standardization method was developed to discriminate the phase-shifted partial discharge(PD) patterns such as a $\phi$-q-n pattern. Considering the PD measurement in the field, it is not so easy to acquire absolute phase angles of PD pulses. As a consequence, one of the significant problems to be solved in applying the neural network algorithm to practical systems is to develop a method that can discriminate phase-shifted $\phi$-q-n patterns. Therefore, authors established a new method which could convert phase-shifted $\phi$-q-n patterns to a standardized $\phi$-q-n pattern which was not influenced by phase shifting. This new standardization method improved the recognition performance of a neural network for the phase-shifted $\phi$-q-n patterns considerably.

  • PDF

Development and Characterization of Pattern Recognition Algorithm for Defects in Semiconductor Packages

  • Kim, Jae-Yeol;Yoon, Sung-Un;Kim, Chang-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권3호
    • /
    • pp.11-18
    • /
    • 2004
  • In this paper, the classification of artificial defects in semiconductor packages is studied by using pattern recognition technology. For this purpose, the pattern recognition algorithm includes the user made MATLAB code. And preprocess is made of the image process and self-organizing map, which is the input of the back-propagation neural network and the dimensionality reduction method, The image process steps are data acquisition, equalization, binary and edge detection. Image process and self-organizing map are compared to the preprocess method. Also the pattern recognition technology is applied to classify two kinds of defects in semiconductor packages: cracks and delaminations.

다층 퍼셉트론 신경망을 이용한 하드 디스크 결함 분포의 패턴 인식 (Pattern Recognition of Hard Disk Defect Distribution Using Multi-Layer Perceptron Network)

  • 문운철;이재두
    • 조명전기설비학회논문지
    • /
    • 제21권6호
    • /
    • pp.94-101
    • /
    • 2007
  • 하드 디스크(Hard Disk) 결함의 표준 패턴 클래스는 6가지로 분류되며, 이는 하드 디스크 생산 공정의 불량 처리 과정에서 중요한 역할을 수행한다. 본 논문에서는 다층 퍼셉트론(Multi-Layer Perceptron)을 이용한 하드 디스크 결함 분포의 패턴 인식 기법을 제시한다. 결함 분포로부터 5가지의 특징들을 추출하고, 이를 이용하여 퍼셉트론의 입력을 구성하였으며, 미리 분류된 표준 패턴 클래스를 이용하여 퍼셉트론의 출력을 구성하였다. 구성된 입출력 데이터들은 오차 역전파(Error Back-Propagation) 알고리듬을 통하여 다층 퍼셉트론의 학습에 사용되었다. 테스트 결과 제시된 신경망은 하드 디스크의 패턴 분류에 만족할 만한 성능을 나타내었다.

인공신경망 기초 의사결정트리 분류기에 의한 시계열모형화에 관한 연구 (A Neural Network-Driven Decision Tree Classifier Approach to Time Series Identification)

  • 오상봉
    • 한국시뮬레이션학회논문지
    • /
    • 제5권1호
    • /
    • pp.1-12
    • /
    • 1996
  • We propose a new approach to classifying a time series data into one of the autoregressive moving-average (ARMA) models. It is bases on two pattern recognition concepts for solving time series identification. The one is an extended sample autocorrelation function (ESACF). The other is a neural network-driven decision tree classifier(NNDTC) in which two pattern recognition techniques are tightly coupled : neural network and decision tree classfier. NNDTc consists of a set of nodes at which neural network-driven decision making is made whether the connecting subtrees should be pruned or not. Therefore, time series identification problem can be stated as solving a set of local decisions at nodes. The decision values of the nodes are provided by neural network functions attached to the corresponding nodes. Experimental results with a set of test data and real time series data show that the proposed approach can efficiently identify the time seires patterns with high precision compared to the previous approaches.

  • PDF