International Journal of Fuzzy Logic and Intelligent Systems
/
제2권3호
/
pp.215-220
/
2002
This paper proposes a method to apply the Backpropagation(BP) algorithm of MVL(Multi-Valued Logic) Neural Network to pattern recognition. It extracts the property of an object density about an original pattern necessary for pattern processing and makes the property of the object density mapped to MVL. In addition, because it team the pattern by using multiple valued logic, it can reduce time f3r pattern and space fer memory to a minimum. There is, however, a demerit that existed MVL cannot adapt the change of circumstance. Through changing input into MVL function, not direct input of an existed Multiple pattern, and making it each variable loam by neural network after calculating each variable into liter function. Error has been reduced and convergence speed has become fast.
This paper presents neural network-based recognition system for automatic light emitting diode (LED) inspection. The back-propagation neural network (BPNN) is proposed and tested. The current-voltage (I-V) characteristic data of LED from the inspection process is used for the network training and testing. This study selects 300 random samples as network training and employs 100 samples as network testing. The experimental results show that if the classification work is done well, the accuracy of recognition is 100%, and the testing speed of the proposed recognition system is almost one half faster than the traditional inspection system does. The proposed neural-network approach is successfully demonstrated by real data sets and can be effectively developed as a recognition system for a practical application purpose.
본 연구에서는 동영상으로부터 동적 수신호 패턴을 효과적으로 인식하기 위한 방법론으로서 복합형 신경망 모델을 제안한다. 제안된 모델은 특징추출 모듈과 패턴분류 모듈로 구성되는데, 이들 각각을 위하여 수정된 구조의 CNN 모델과, WFMM 모델을 도입한다. 또한 목표물의 움직임 정보에 기초한 시공간적 템플릿 구조의 데이터표현을 소개한다. 본 논문에서는 우선 수신호 패턴 데이터에서 특징점의 시간적 변이 및 공간적 변이에 의한 영향을 보완하기 위하여 3차원 수용영역 구조로 확장된 CNN 모델을 제시한다. 이어서 패턴분류 단계를 위하여 가중치를 갖는 구조의 FMM 신경망 모델을 소개하고, 신경망의 구조와 동작특성에 관해 기술한다. 또한 제안된 모델이 기존의 FMM 신경망에서 중첩 하이퍼박스의 축소과정에서 발생하는 학습효과의 왜곡현상을 개선할 수 있음을 보인다. 응용으로 가전제품 원격제어 문제를 전제하여 간략화된 수신호패턴 인식 문제에 적용한 실험결과로부터 제안된 이론의 타당성을 고찰한다.
This paper proposes a novel pattern recognition approach based on the radial basis function (RBF) neural network for identifying insulation defects of high-voltage electrical apparatus arising from partial discharge (PD). Pattern recognition of PD is used for identifying defects causing the PD, such as internal discharge, external discharge, corona, etc. This information is vital for estimating the harmfulness of the discharge in the insulation. Since an insulation defect, such as one resulting from PD, would have a corresponding particular pattern, pattern recognition of PD is significant means to discriminate insulation conditions of high-voltage electrical apparatus. To verify the proposed approach, experiments were conducted to demonstrate the field-test PD pattern recognition of cast resin current transformer (CRCT) models. These tests used artificial defects created in order to produce the common PD activities of CRCTs by using feature vectors of field-test PD patterns. The significant features are extracted by using nonlinear principal component analysis (NLPCA) method. The experimental data are found to be in close agreement with the recognized data. The test results show that the proposed approach is efficient and reliable.
In this study, researchers developed the estimative algorithm for artificial defect in semiconductor packages and performed it by pattern recognition technology. For this purpose, the estimative algorithm was included that researchers made software with MATLAB. The software consists of some procedures including ultrasonic image acquisition, equalization filtering, Self-Organizing Map and Backpropagation Neural Network. Self-organizing Map and Backpropagation Neural Network are belong to methods of Neural Networks. And the pattern recognition technology has applied to classify three kinds of detective patterns in semiconductor packages : Crack, Delamination and Normal. According to the results, we were confirmed that estimative algerian was provided the recognition rates of 75.7% (for Crack) and 83.4% (for Delamination) and 87.2 % (for Normal).
In this study, we nodestructive test based on ultrasonic test as inspection method and compared backpropagation neural network(BPNN) with probabilistic neural network(PNN) as pattern recognition algorithm of welding flasw. For this purpose, variables are applied the same to two algorithms. Where, feature variables are zooming flaw signals of reflected whole signals from welding flaws in time domain. Through this process, we confirmed advantages/disadvantages of two algorithms and identified application methods of two algorithms.
This paper presents an algorithm for recognizing surface mount device(SMD) IC pattern based on the error back propoagation(EBP) neural network and discrete cosine transform(DCT). In this approach, we chose such parameters as frequency, angle, translation and amplitude for the shape informantion of SMD IC, which are calculated from the coefficient matrix of DCT. These feature parameters are normalized and then used for the input vector of neural network which is capable of adapting the surroundings such as variation of illumination, arrangement of objects and translation. Learning of EBP neural network is carried out until maximum error of the output layer is less then 0.020 and consequently, after the learning of forty thousand times, the maximum error have got to this value. Experimental results show that the rate of recognition is 100% in case of the random pattern taken at a similar circumstance as well as normalized training pattern. It also show that proposed method is not only relatively relatively simple compare with the traditional space domain method in extracting the feature parameter but also able to re recognize the pattern's class, position, and existence.
This paper was undertaken to recognize the pattern of the wear debris by neural network as a link for the development of diagnosis system for movable condition of the lubricated machine surface. The wear test was carried out under different experimental conditions using the wear test device was made in laboratory and wear testing specimen of the pin-on-disk type were rubbed in paraffine series base oil, by varying applied load, sliding distance and mating material. The neural network has been used to pattern recognition of four parameter (diameter, elongation, complex and contrast) of the wear debris and learned the friction condition of five values (material 3, applied load 1, sliding distance 1). The three kinds of the wear debris had a different pattern characteristic and recognized the friction condition and materials very well by the neural network. The characteristic parameter of the large wear debris over a few micron size enlarged recognition ability.
For the exact classification of the arm motion this paper proposes EMG pattern recognition method with neural network. For this autoregressive coefficient, linear cepstrum coefficient, and adaptive cepstrum coefficient are selected for the feature parameter of EMG signal, and they are extracted from time series EMG signal. For the function recognition of the feature parameter a radial basis function network, a field of neural network is designed. For the improvement of recognition rate, a number of radial basis function network are combined in parallel, comparing with a backpropagation neural network an existing method.
In this paper, a patern recognition method of surface mount device(SMD) IC using wavelet transform and neural network is proposed. We chose the feature parameter according to the characteristics of coefficient matrix which is obtained from four level discrete wavelet transform (DWT). These feature parameters are normalized and then used for the input vector of neural network which is capable of adapting the surroundings such as variation of illumination, arrangement of objects and translation. Experimental results show that when the same form of feature pattern, as is used for learning, is put into neural network and gained 100% rate ofrecognition irrespective of SMD IC kinds, location and variation of illumination. In the case of unused feature pattern for learning, the recognition rate is 85.9% under the similar surroundings, where as an average recognition rate is 96.87% for the case of reregulated value of illumination. Proosed method is relatively simple compared with the traditional space domain method in extracting the feature parameter and is also well suited for recognizing the pattern's class, position and existence. It can also shorten the processing tiem better than method extracting feature parameter with the use of discrete cosine transform(DCT) and adapt the surroundings such as variation of illumination, the arrangement and the translation of SMD IC.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.