• Title/Summary/Keyword: pattern recognition

Search Result 2,473, Processing Time 0.029 seconds

Eyelid Detection Algorithm Based on Parabolic Hough Transform for Iris Recognition (홍채 인식을 위한 포물 허프 변환 기반 눈꺼풀 영역 검출 알고리즘)

  • Jang, Young-Kyoon;Kang, Byung-Jun;Park, Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.94-104
    • /
    • 2007
  • Iris recognition is biometric technology which uses a unique iris pattern of user in order to identify person. In the captured iris image by conventional iris recognition camera, it is often the case with eyelid occlusion, which covers iris information. The eyelids are unnecessary information that causes bad recognition performance, so this paper proposes robust algorithm in order to detect eyelid. This research has following three advantages compared to previous works. First, we remove the detected eyelash and specular reflection by linear interpolation method because they act as noise factors when locating eyelid. Second, we detect the candidate points of eyelid by using mask in limited eyelid searching area, which is determined by searching the cross position of eyelid and the outer boundary of iris. And our proposed algorithm detects eyelid by using parabolic hough transform based on the detected candidate points. Third, there have been many researches to detect eyelid, but they did not consider the rotation of eyelid in an iris image. Whereas, we consider the rotation factor in parabolic hough transform to overcome such problem. We tested our algorithm with CASIA Database. As the experimental results, the detection accuracy were 90.82% and 96.47% in case of detecting upper and lower eyelid, respectively.

Design of ASM-based Face Recognition System Using (2D)2 Hybird Preprocessing Algorithm (ASM기반 (2D)2 하이브리드 전처리 알고리즘을 이용한 얼굴인식 시스템 설계)

  • Kim, Hyun-Ki;Jin, Yong-Tak;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.173-178
    • /
    • 2014
  • In this study, we introduce ASM-based face recognition classifier and its design methodology with the aid of 2-dimensional 2-directional hybird preprocessing algorithm. Since the image of face recognition is easily affected by external environments, ASM(active shape model) as image preprocessing algorithm is used to resolve such problem. In particular, ASM is used widely for the purpose of feature extraction for human face. After extracting face image area by using ASM, the dimensionality of the extracted face image data is reduced by using $(2D)^2$hybrid preprocessing algorithm based on LDA and PCA. Face image data through preprocessing algorithm is used as input data for the design of the proposed polynomials based radial basis function neural network. Unlike as the case in existing neural networks, the proposed pattern classifier has the characteristics of a robust neural network and it is also superior from the view point of predictive ability as well as ability to resolve the problem of multi-dimensionality. The essential design parameters (the number of row eigenvectors, column eigenvectors, and clusters, and fuzzification coefficient) of the classifier are optimized by means of ABC(artificial bee colony) algorithm. The performance of the proposed classifier is quantified through yale and AT&T dataset widely used in the face recognition.

Development of Learning Algorithm using Brain Modeling of Hippocampus for Face Recognition (얼굴인식을 위한 해마의 뇌모델링 학습 알고리즘 개발)

  • Oh, Sun-Moon;Kang, Dae-Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.5 s.305
    • /
    • pp.55-62
    • /
    • 2005
  • In this paper, we propose the face recognition system using HNMA(Hippocampal Neuron Modeling Algorithm) which can remodel the cerebral cortex and hippocampal neuron as a principle of a man's brain in engineering, then it can learn the feature-vector of the face images very fast and construct the optimized feature each image. The system is composed of two parts. One is feature-extraction and the other is teaming and recognition. In the feature extraction part, it can construct good-classified features applying PCA(Principal Component Analysis) and LDA(Linear Discriminants Analysis) in order. In the learning part, it cm table the features of the image data which are inputted according to the order of hippocampal neuron structure to reaction-pattern according to the adjustment of a good impression in the dentate gyrus region and remove the noise through the associate memory in the CA3 region. In the CA1 region receiving the information of the CA3, it can make long-term memory learned by neuron. Experiments confirm the each recognition rate, that are face changes, pose changes and low quality image. The experimental results show that we can compare a feature extraction and learning method proposed in this paper of any other methods, and we can confirm that the proposed method is superior to existing methods.

A Method for Determining Face Recognition Suitability of Face Image (얼굴영상의 얼굴인식 적합성 판정 방법)

  • Lee, Seung Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.295-302
    • /
    • 2018
  • Face recognition (FR) has been widely used in various applications, such as smart surveillance systems, immigration control in airports, user authentication in smart devices, and so on. FR in well-controlled conditions has been extensively studied and is relatively mature. However, in unconstrained conditions, FR performance could degrade due to undesired characteristics of the input face image (such as irregular facial pose variations). To overcome this problem, this paper proposes a new method for determining if an input image is suitable for FR. In the proposed method, for an input face image, reconstruction error is computed by using a predefined set of reference face images. Then, suitability can be determined by comparing the reconstruction error with a threshold value. In order to reduce the effect of illumination changes on the determination of suitability, a preprocessing algorithm is applied to the input and reference face images before the reconstruction. Experimental results show that the proposed method is able to accurately discriminate non-frontal and/or incorrectly aligned face images from correctly aligned frontal face images. In addition, only 3 ms is required to process a face image of $64{\times}64$ pixels, which further demonstrates the efficiency of the proposed method.

Subjective Oral Health Awareness and Toothbrushing Pattern of the Smoker and Non-Smoker of Adults in Some Regions (일부지역 성인의 흡연자와 비흡연자의 주관적 구강건강 인식과 잇솔질 형태)

  • Lee, Se-Na;Jo, Min-Jeong;Choi, Yun-Jeong;Kim, Hye-Jin;Lee, Min-Kyung;Yoon, Hyun-Seo;Lee, Jung-Hwa
    • Journal of Korean Clinical Health Science
    • /
    • v.1 no.2
    • /
    • pp.1-9
    • /
    • 2013
  • Purpose: The purpose of this study was to provide basic data of oral health policy and effective nonsmoking educational the basic data comparing the subjective oral health recognition and tooth brushing pattern by smoking whether or not, the subjects were adults to visit dental clinic. Methods: The subjects were a total of about 245 adults visited dental clinics in Busan metropolitan city and Gyeongnam province some areas. The datas were collected from December 17, 2012 to February 17, 2013. Data analyses were done with SPSS program through frequency analysis and chi-square test. Results: The tooth brushing pattern of non-smokers were more brushing after meals and snacks, and then brushing within three minutes before bedtime and brushing with more than 3 minutes, brushing with rotating method is pretty more, smokers were not brushing after the meal, a snack, and then within 3 minutes before going to bed without brushing, more than three minutes brushing with rotation method. Subjective oral health status of non-smokers, the more awareness is pretty healthy, but smokers were the more unhealthy side, the greater the smoking amount among smokers subjective oral health were recognized as a bad side. Conclusion: It was necessary to recognize subjective oral health status and to provide a way to practice corrective brushing pattern according to smoking or not and smoking amount. Subjective oral health awareness and brushing pattern directly related to the smoking or not and smoking amounts of the subject, so when dental care, it should be followed to recognize exactly what to give oral health status of subjects and provide a way of effective oral health management in order to improve the oral health and quality of life.

  • PDF

Active Water-Level and Distance Measurement Algorithm using Light Beam Pattern (광패턴을 이용한 능동형 수위 및 거리 측정 기법)

  • Kim, Nac-Woo;Son, Seung-Chul;Lee, Mun-Seob;Min, Gi-Hyeon;Lee, Byung-Tak
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.156-163
    • /
    • 2015
  • In this paper, we propose an active water level and distance measurement algorithm using a light beam pattern. On behalf of conventional water level gauge types of pressure, float-well, ultrasonic, radar, and others, recently, extensive research for video analysis based water level measurement methods is gradually increasing as an importance of accurate measurement, monitoring convenience, and much more has been emphasized. By turning a reference light beam pattern on bridge or embankment actively, we suggest a new approach that analyzes and processes the projected light beam pattern image obtained from camera device, measures automatically water level and distance between a camera and a bridge or a levee. As contrasted with conventional methods that passively have to analyze captured video information for recognition of a watermark attached on a bridge or specific marker, we actively use the reference light beam pattern suited to the installed bridge environment. So, our method offers a robust water level measurement. The reasons are as follows. At first, our algorithm is effective against unfavorable visual field, pollution or damage of watermark, and so on, and in the next, this is possible to monitor in real-time the portable-based local situation by day and night. Furthermore, our method is not need additional floodlight. Tests are simulated under indoor environment conditions from distance measurement over 0.4-1.4m and height measurement over 13.5-32.5cm.

Pattern Recognition of Ship Navigational Data Using Support Vector Machine

  • Kim, Joo-Sung;Jeong, Jung Sik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.268-276
    • /
    • 2015
  • A ship's sailing route or plan is determined by the master as the decision maker of the vessel, and depends on the characteristics of the navigational environment and the conditions of the ship. The trajectory, which appears as a result of the ship's navigation, is monitored and stored by a Vessel Traffic Service center, and is used for an analysis of the ship's navigational pattern and risk assessment within a particular area. However, such an analysis is performed in the same manner, despite the different navigational environments between coastal areas and the harbor limits. The navigational environment within the harbor limits changes rapidly owing to construction of the port facilities, dredging operations, and so on. In this study, a support vector machine was used for processing and modeling the trajectory data. A K-fold cross-validation and a grid search were used for selecting the optimal parameters. A complicated traffic route similar to the circumstances of the harbor limits was constructed for a validation of the model. A group of vessels was composed, each vessel of which was given various speed and course changes along a specified route. As a result of the machine learning, the optimal route and voyage data model were obtained. Finally, the model was presented to Vessel Traffic Service operators to detect any anomalous vessel behaviors. Using the proposed data modeling method, we intend to support the decision-making of Vessel Traffic Service operators in terms of navigational patterns and their characteristics.

Design of PCA-based pRBFNNs Pattern Classifier for Digit Recognition (숫자 인식을 위한 PCA 기반 pRBFNNs 패턴 분류기 설계)

  • Lee, Seung-Cheol;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.4
    • /
    • pp.355-360
    • /
    • 2015
  • In this paper, we propose the design of Radial Basis Function Neural Network based on PCA in order to recognize handwritten digits. The proposed pattern classifier consists of the preprocessing step of PCA and the pattern classification step of pRBFNNs. In the preprocessing step, Feature data is obtained through preprocessing step of PCA for minimizing the information loss of given data and then this data is used as input data to pRBFNNs. The hidden layer of the proposed classifier is built up by Fuzzy C-Means(FCM) clustering algorithm and the connection weights are defined as linear polynomial function. In the output layer, polynomial parameters are obtained by using Least Square Estimation (LSE). MNIST database known as one of the benchmark handwritten dataset is applied for the performance evaluation of the proposed classifier. The experimental results of the proposed system are compared with other existing classifiers.

Decoding Brain Patterns for Colored and Grayscale Images using Multivariate Pattern Analysis

  • Zafar, Raheel;Malik, Muhammad Noman;Hayat, Huma;Malik, Aamir Saeed
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.4
    • /
    • pp.1543-1561
    • /
    • 2020
  • Taxonomy of human brain activity is a complicated rather challenging procedure. Due to its multifaceted aspects, including experiment design, stimuli selection and presentation of images other than feature extraction and selection techniques, foster its challenging nature. Although, researchers have focused various methods to create taxonomy of human brain activity, however use of multivariate pattern analysis (MVPA) for image recognition to catalog the human brain activities is scarce. Moreover, experiment design is a complex procedure and selection of image type, color and order is challenging too. Thus, this research bridge the gap by using MVPA to create taxonomy of human brain activity for different categories of images, both colored and gray scale. In this regard, experiment is conducted through EEG testing technique, with feature extraction, selection and classification approaches to collect data from prequalified criteria of 25 graduates of University Technology PETRONAS (UTP). These participants are shown both colored and gray scale images to record accuracy and reaction time. The results showed that colored images produces better end result in terms of accuracy and response time using wavelet transform, t-test and support vector machine. This research resulted that MVPA is a better approach for the analysis of EEG data as more useful information can be extracted from the brain using colored images. This research discusses a detail behavior of human brain based on the color and gray scale images for the specific and unique task. This research contributes to further improve the decoding of human brain with increased accuracy. Besides, such experiment settings can be implemented and contribute to other areas of medical, military, business, lie detection and many others.

Characteristics of Particulate Matter Concentration and Classification of Contamination Patterns in the Seoul Metropolitan Subway Tunnels (서울시 지하철 터널 내 입자상물질의 농도 특성 및 오염형태 분류)

  • Lee, Eun-Sun;Lee, Tae-Jung;Park, Min-Bin;Park, Duck-Shin;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.6
    • /
    • pp.593-604
    • /
    • 2017
  • The suspended particulate matter(PM) was measured in subway tunnel of Seoul Line 1 to 9 in order to evaluate the pollution degree and characteristics of the PM in the subway tunnel. Also, to analyze the effect of outdoor aerosol concentration on the PM concentration of subway tunnels, the ambient PM concentration around the subway station was extracted by spatial analysis using $PM_{10}$ data of Seoul air pollution monitoring network. Finally, in order to understand pollution pattern in the Seoul subway tunnels, cluster analysis was performed based on input data set such as PM levels in tunnel, tunnel depth, length, curvature radius, outdoor ambient air pollution levels and so on. The average concentration of $PM_{10}$, $PM_{2.5}$, and $PM_1$ on subway tunnels were $98.0{\pm}37.4$, $78.4{\pm}28.7$, and $56.9{\pm}19.2{\mu}g/m^3$, respectively. As a result of the cluster analysis, tunnels from Seoul subway Line-1 to Line-9 were classified into five classes, and the concentrations and physical properties of the tunnels were compared. This study can provide a method to reduce PM concentration in tunnel for each pollution pattern and provide basic information about air quality control in Seoul subway tunnel.