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Abstract

A ship’s sailing route or plan is determined by the master as the decision maker of the vessel,
and depends on the characteristics of the navigational environment and the conditions of the
ship. The trajectory, which appears as a result of the ship’s navigation, is monitored and stored
by a Vessel Traffic Service center, and is used for an analysis of the ship’s navigational pattern
and risk assessment within a particular area. However, such an analysis is performed in the
same manner, despite the different navigational environments between coastal areas and the
harbor limits. The navigational environment within the harbor limits changes rapidly owing
to construction of the port facilities, dredging operations, and so on. In this study, a support
vector machine was used for processing and modeling the trajectory data. A K-fold cross-
validation and a grid search were used for selecting the optimal parameters. A complicated
traffic route similar to the circumstances of the harbor limits was constructed for a validation
of the model. A group of vessels was composed, each vessel of which was given various speed
and course changes along a specified route. As a result of the machine learning, the optimal
route and voyage data model were obtained. Finally, the model was presented to Vessel Traffic
Service operators to detect any anomalous vessel behaviors. Using the proposed data modeling
method, we intend to support the decision-making of Vessel Traffic Service operators in terms
of navigational patterns and their characteristics.
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1. Introduction

Based on Article 36 of the Maritime Safety Act (20), Article 28 of the Open Ports Rules
and Regulations, and the IMO RESOLUTION A.857(20) [1], a Vessel Traffic Service (VTS)
can be established and operated by relevant or authorized governments as a way to prevent
accidents and protect marine environments. The goals of a VTS are ship safety and efficiency
at sea. However, the risk of marine accidents is increasing owing to larger and faster ships and
increased volumes of marine traffic. VTS operators (VTSOs) monitor the traffic situations
and provid proper information 24 hours a day to prevent potential accidents. Although such
tasks are extremely important aspects of VTS operations, they are made entirely based on the
specific capabilities of the VTSO [2, 3]. The decision-making of a VTSO is a matter of how
they collect and utilize significant amounts of information. Kim et al. [4, 5] tried to apply a
ship’s dead reckoning position (DRP) on its traffic route; however, an advanced DRP requires
an accurate traffic route model. Ship trajectories and navigational data are collected,
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stored, and used for traffic and accident analyses by VTS cen-
ters.

However, current traffic analyses have been conducted for
simple reasons such as passage usage or frequency. In addition,
traffic analyses within harbor limits have also been performed
in similar ways in coastal areas [6-8]. In particular, the traffic
patterns and navigational environments within harbor limits
differ in different coastal areas owing to frequent changes in
course and speed, a large density of vessels, the geographical
conditions, construction of the port facilities, dredging opera-
tions, and so on. Depending on the ship destinations, different
traffic patterns among the vessels that navigate the same pas-
sage exist, and there are few datasets classifying each specific
leg [9-11]. Owing to these characteristics, it is necessary to
develop methods applicable to particular harbor limits.

In this study, we present a data modeling method for ves-
sels that are the last have called, the results of which can be
calculated using a small dataset. A support vector machine-
regression (SVM-R) was used to develop the optimal-route and
navigational-pattern model. A K-fold cross-validation and grid
search were used for selecting the appropriate parameters. A
simulation was conducted using a virtual channel and ships to
validate the proposed modeling method. The channel complex-
ity used is similar to the circumstances found in actual harbor
limits. A group of vessels was composed within the channel,
where each vessel was given various changes in speed and
course. As a result of machine learning, the optimal route and
voyage data model were obtained. Finally, the proposed model
was presented to VTSOs to detect anomalous vessel behaviors.

2. Support Vector Machine-Regression

An SVM is a tool used for classifying data consisting of a
hyperplane, and generates the maximum margin among the
data using a supervised learning method [12-14]. An SVM was
originally developed for solving classification problems, but
has recently been extended to address problems associated with
regression and probability density estimations [15-17].

An SVM assumes that the training dataset, (x1, y1), . . . ,
(xN , yN ) ∈ RM ×R, are given. When learning datasets (N)
are given in input space RM , a linear function f(x) that has
spaces ε from output vector y against input vector x is

f (x) =< w, x > +b with w ∈ RM , b ∈ R. (1)

As shown in Figure 1, when training datasets are given out-

side of space ε, a solution to the following optimization problem
using slack variables ξi, ξ∗i is required [12, 15]:

min
1

2
‖w‖2 +C

N∑
i=1

(ξi + ξ∗i )

subject to yi− < w, xi > −b ≤ ε+ ξi

< w, xi > +b− yi ≤ ε+ ξi

ξi, ξ
∗
i ≥ 0.

(2)

Meanwhile, it is necessary to solve the separation of a non-
linear dataset. In general, a linearly separable condition may
occur if the dataset transfers to a higher-level space using a non-
linear transfer function. Figure 2 shows a case of linear data that
cannot be classified [12]. Non-detachable data are transferred to
a non-linear case using a non-linear transfer function (mapping)
zk = (xk,x

2
k).

For two-dimensional data, it is possible to obtain a linearly
separable plane when mapping as a three-dimensional space.
The kernel function is defined as follows:

K (x,x′) = φ (x)
T
φ (x′) . (3)

As shown in Figure 3, function f(x) is composed in a non-
linear form but can be transformed into a linear form using a
kernel function [12, 15]:

y =

N∑
i=1

αi +α∗
i )· < φ (xi) ,φ (x) > +b

=

N∑
i=1

(αi +α∗
i ) ·K (xi,x) > +b.

(4)

The types of kernel functions include splines, polynomials,
hyperbolic tangents, sigmoid functions, and radial basis func-
tions (RBFs) [18]. In this study, we used an RBF, which is
generally known to have an excellent performance capability:

K (xi, xj) = exp

(
−||xi − xj||

2

σ2

)
. (5)

3. Data Extraction

Data extraction is a three-step process:

1) Data collection

2) Data classification

3) Data modeling
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Figure 1. ε-Insensitive loss function.

Figure 2. Non-detachable data mapping to two-dimensional space.

In this section, we present the proposed data modeling method.
The collected trajectory data are categorized as regional separa-
tions and the separated data are classified as particular routes
based on the gate line at each passage [19, 20]. The divided
datasets need to be converted into a type of column vector to
match the SVM-R algorithm before the modeling process is
conducted. The modeling process can be described through the
following steps [18]:

1) Dataset transformation

2) Data scaling

3) Kernel function selection

4) Parameter selection

4-1) K-fold cross-validation

4-2) Grid search

5) Selected model training

6) Model validation

For the above modeling process, it is necessary to separate
the datasets into sub-datasets and transform them into sets of
column vectors such as time T(n) = [t1, t2, · · · , tn]T , longi-
tude Lon(tn) = [x(t1),x(t2), · · · ,x(tn)]T , latitude Lat(tn) =

[y(t1), y(t2), · · · , y(tn)]T , course Co(tn) = [c(t1), · · · , c(tn)]T ,
and speed Spd(tn) = [s(t1), s(t2), · · · , s(tn)]T .

According to Hsu et al. [18], scaling prior to applying an
SVM is very important. The main advantage of scaling is to
avoid attributes within greater numeric ranges dominating those
within smaller numeric ranges. Another advantage is to avoid
numerical difficulties during the calculation.

The vector T(n) = [t1, t2, · · · , tn]T can be transformed into

Tscaling = [(t1 − t1)/(tk − t1),(t2 − t1)/(tk − t1), · · · ,

(tk − t1)/(tk − t1)]T

after scaling from zero to 1. The other vectors (i.e., Lon (tn),
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Figure 3. Kernel functions for transforming data into higher dimensional feature space.

Lat(tn), Co(tn), and Spd(tn)) can also be transformed into

Tscaling =
T −Min[T ]

Max [T ]−Min[T ]
. (6)

For the optimal parameter search, the training sets need to
be divided into ‘k’ sub-sets of equal size. One sub-set is tested
using the algorithm and trained on the remaining ‘k-1’ sub-
sets. The cross-validation procedure can prevent an over-fitting
problem.

Figure 4 shows a k-fold cross-validation, which can be ex-
plained as below:

Minvalidation error =Min

(
q1 + q2 + q3 + · · ·+ qk

k

)
. (7)

As a result of each instance, a validation errors (q1, · · · , qk),
and the minimum validation error can be found.

4. Simulation

We reproduced a curved virtual channel and ship trajectories
with various characteristics. The circumstances are similar with
the actual harbor limits. As shown in Figure 5, the channel is
in the form of a letter ‘R’ and the ship tracks are within the
channel. Before conducting the simulation, the whole datasets
were separated into sub-datasets and transformed into sets of
column vectors. The simulation conditions are as follows.

1) Sharp curves
2) Narrow areas
3) Various directions
4) High density

5) Different course changes

5) Different speeds

6) Navigating within the channel only

7) Same starting and end points

8) No detours or short-cuts through the channel

The separated datasets are divided into sub-datasets again,
which consist of a validation dataset and four learning datasets.
A 5-fold cross-validation and grid search were conducted to
select the optimal parameters, and an RBF was used as a kernel
function. The results of the calculations are listed in Table 1.

As shown in Figures 6(left) and 7(left), each sub-dataset has
a certain pattern, but the datasets are necessary to be adjusted
because the ships are sailing within the same location but at
different speeds.

After scaling the data, machine learning was conducted for
whole datasets. As a result of the learning, red curves were
obtained, as shown in Figures 6(right) and 7(right).

As shown in Figure 8, the optimal route is obtained after
modeling. The entire datasets were learned to build the model
by applying the selected parameters. The data conversion and
SVM-R were performed for all sub-datasets.

The final model can be adjusted based on the number of
training datasets or samplings. It is also possible to reduce the
calculation time of the modeling process by downsizing the
number of support vectors used.

As shown in Figure 9, the course-change model was obtained
through machine learning. The extracted navigational model
can be compared to data values for changes in course and speed
at a certain position through a combination with the coordinates.
It can also be used for preventing accidents by identifying
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Figure 4. K-fold cross-validation.

Figure 5. Virtual curved channel and ship tracks.

the anomalous movements of ships and predicting changes
in navigation before they occur. If any deviation in a ship’s
position or navigational data, such as course and speed, occurs
it means that the uncertainty about the ship’s future position is
increasing. Therefore, the proposed model can be used for the
prediction of future navigation.

5. Conclusion

It is important to understand a ship’s navigational intention and
its location in order to predict traffic situations and organize
traffic plans and determine dangerous traffic situations. In par-
ticular, the identification of a ship’s anomalous navigational
behaviors within VTS areas is available only through the con-
stant monitoring of traffic states by VTSOs. In addition, the
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Table 1. Parameter selection results

g\e 0 1 2 3 4 5

6 4.4662 4.2730 4.2620 4.7694 5.2301 6.2994

7 4.5501 4.2347 4.2148 4.6951 5.2297 6.4380

8 4.6137 4.2476 4.1977 4.6256 5.6486 8.1237

9 4.6653 4.2805 4.2111 4.8137 6.2200 9.2866

10 4.8653 4.4474 4.4471 5.0990 6.6824 10.0518

Figure 6. Plotted latitude components (left), and results of machine learning after scaling (right). SVM, support vector machine.

Figure 7. Plotted longitude components (left), and results of machine learning after scaling (right). SVM, support vector machine.
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Figure 8. Extracted traffic route.

Figure 9. Course changes of extracted route (upper), course data of all ships (middle), and extracted course model (lower).

workload and stress levels of VTSOs are increasing in VTS
areas owing to a high density of traffic and narrow maritime
waters. This study was conducted to prevent accidents to ma-
rine traffic by reducing errors of VTSOs caused by individual

differences in ability. The proposed method can be used for
identifying a ship’s deviation and irregular changes in speed and
course. It may also be used for supporting the decision-making
of a VTSO under complex situations by improving a ship’s
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dead reckoning position. Moreover, it is expected to assist a
proper Traffic Organization Service (TOS) or Information Ser-
vice (INS) when multilateral relationships are encountered in
a VTS area. As a future study, we plan to develop additional
methods that can be applied to a large number of ships with
different types and navigational environments. Additionally,
an application needs to be developed for investigating marine
accident in VTS areas.
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