• Title/Summary/Keyword: pathway enrichment

Search Result 105, Processing Time 0.028 seconds

Comprehensive Bioinformation Analysis of the MRNA Profile of Fascin Knockdown in Esophageal Squamous Cell Carcinoma

  • Wu, Bing-Li;Luo, Lie-Wei;Li, Chun-Quan;Xie, Jian-Jun;Du, Ze-Peng;Wu, Jian-Yi;Zhang, Pi-Xian;Xu, Li-Yan;Li, En-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7221-7227
    • /
    • 2013
  • Background: Fascin, an actin-bundling protein forming actin bundles including filopodia and stress fibers, is overexpressed in multiple human epithelial cancers including esophageal squamous cell carcinoma (ESCC). Previously we conducted a microarray experiment to analyze fascin knockdown by RNAi in ESCC. Method: In this study, the differentially expressed genes from mRNA expression profilomg of fascin knockdown were analyzed by multiple bioinformatics methods for a comprehensive understanding of the role of fascin. Results: Gene Ontology enrichment found terms associated with cytoskeleton organization, including cell adhesion, actin filament binding and actin cytoskeleton, which might be related to fascin function. Except GO categories, the differentially expressed genes were annotated by 45 functional categories from the Functional Annotation Chart of DAVID. Subpathway analysis showed thirty-nine pathways were disturbed by the differentially expressed genes, providing more detailed information than traditional pathway enrichment analysis. Two subpathways derivated from regulation of the actin cytoskeleton were shown. Promoter analysis results indicated distinguishing sequence patterns and transcription factors in response to the co-expression of downregulated or upregulated differentially expressed genes. MNB1A, c-ETS, GATA2 and Prrx2 potentially regulate the transcription of the downregulated gene set, while Arnt-Ahr, ZNF42, Ubx and TCF11-MafG might co-regulate the upregulated genes. Conclusions: This multiple bioinformatic analysis helps provide a comprehensive understanding of the roles of fascin after its knockdown in ESCC.

Systems-level mechanisms of action of Panax ginseng: a network pharmacological approach

  • Park, Sa-Yoon;Park, Ji-Hun;Kim, Hyo-Su;Lee, Choong-Yeol;Lee, Hae-Jeung;Kang, Ki Sung;Kim, Chang-Eop
    • Journal of Ginseng Research
    • /
    • v.42 no.1
    • /
    • pp.98-106
    • /
    • 2018
  • Panax ginseng has been used since ancient times based on the traditional Asian medicine theory and clinical experiences, and currently, is one of the most popular herbs in the world. To date, most of the studies concerning P. ginseng have focused on specific mechanisms of action of individual constituents. However, in spite of many studies on the molecular mechanisms of P. ginseng, it still remains unclear how multiple active ingredients of P. ginseng interact with multiple targets simultaneously, giving the multidimensional effects on various conditions and diseases. In order to decipher the systems-level mechanism of multiple ingredients of P. ginseng, a novel approach is needed beyond conventional reductive analysis. We aim to review the systems-level mechanism of P. ginseng by adopting novel analytical framework-network pharmacology. Here, we constructed a compound-target network of P. ginseng using experimentally validated and machine learning-based prediction results. The targets of the network were analyzed in terms of related biological process, pathways, and diseases. The majority of targets were found to be related with primary metabolic process, signal transduction, nitrogen compound metabolic process, blood circulation, immune system process, cell-cell signaling, biosynthetic process, and neurological system process. In pathway enrichment analysis of targets, mainly the terms related with neural activity showed significant enrichment and formed a cluster. Finally, relative degrees analysis for the target-disease association of P. ginseng revealed several categories of related diseases, including respiratory, psychiatric, and cardiovascular diseases.

Identification of Hub Genes in the Pathogenesis of Ischemic Stroke Based on Bioinformatics Analysis

  • Yang, Xitong;Yan, Shanquan;Wang, Pengyu;Wang, Guangming
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.5
    • /
    • pp.697-709
    • /
    • 2022
  • Objective : The present study aimed to identify the function of ischemic stroke (IS) patients' peripheral blood and its role in IS, explore the pathogenesis, and provide direction for clinical research progress by comprehensive bioinformatics analysis. Methods : Two datasets, including GSE58294 and GSE22255, were downloaded from Gene Expression Omnibus database. GEO2R was utilized to obtain differentially expressed genes (DEGs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs were performed using the database annotation, visualization and integrated discovery database. The protein-protein interaction (PPI) network of DEGs was constructed by search tool of searching interactive gene and visualized by Cytoscape software, and then the Hub gene was identified by degree analysis. The microRNA (miRNA) and miRNA target genes closely related to the onset of stroke were obtained through the miRNA gene regulatory network. Results : In total, 36 DEGs, containing 27 up-regulated and nine down-regulated DEGs, were identified. GO functional analysis showed that these DEGs were involved in regulation of apoptotic process, cytoplasm, protein binding and other biological processes. KEGG enrichment analysis showed that these DEGs mediated signaling pathways, including human T-cell lymphotropic virus (HTLV)-I infection and microRNAs in cancer. The results of PPI network and cytohubba showed that there was a relationship between DEGs, and five hub genes related to stroke were obtained : SOCS3, KRAS, PTGS2, EGR1, and DUSP1. Combined with the visualization of DEG-miRNAs, hsa-mir-16-5p, hsa-mir-181a-5p and hsa-mir-124-3p were predicted to be the key miRNAs in stroke, and three miRNAs were related to hub gene. Conclusion : Thirty-six DEGs, five Hub genes, and three miRNA were obtained from bioinformatics analysis of IS microarray data, which might provide potential targets for diagnosis and treatment of IS.

Chlorophyll contents and expression profiles of photosynthesis-related genes in water-stressed banana plantlets

  • Sri Nanan Widiyanto;Syahril Sulaiman;Simon Duve;Erly Marwani;Husna Nugrahapraja;Diky Setya Diningrat
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.127-136
    • /
    • 2023
  • Water scarcity decreases the rate of photosynthesis and, consequently, the yield of banana plants (Musa spp). In this study, transcriptome analysis was performed to identify photosynthesis-related genes in banana plants and determine their expression profiles under water stress conditions. Banana plantlets were in vitro cultured on Murashige and Skoog agar medium with and without 10% polyethylene glycol and marked as BP10 and BK. Chlorophyll contents in the plant shoots were determined spectrophotometrically. Two cDNA libraries generated from BK and BP10 plantlets, respectively, were used as the reference for transcriptome data. Gene ontology (GO) enrichment analysis was performed using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) and visualized using the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway prediction. Morphological observations indicated that water deficiency caused chlorosis and reduced the shoot chlorophyll content of banana plantlets. GO enrichment identified 52 photosynthesis-related genes that were affected by water stress. KEGG visualization revealed the pathways related to the 52 photosynthesisr-elated genes and their allocations in four GO terms. Four, 12, 15, and 21 genes were related to chlorophyll biosynthesis, the Calvin cycle, the photosynthetic electron transfer chain, and the light-harvesting complex, respectively. Differentially expressed gene (DEG) analysis using DESeq revealed that 45 genes were down-regulated, whereas seven genes were up-regulated. Four of the down-regulated genes were responsible for chlorophyll biosynthesis and appeared to cause the decrease in the banana leaf chlorophyll content. Among the annotated DEGs, MaPNDO, MaPSAL, and MaFEDA were selected and validated using quantitative real-time PCR.

Effects of an Anti-cancer Drug, Tubastatin A, on the Growth and Development of Immature Oocytes in Mice (항암제 tubastatin A에 의한 생쥐 미성숙 난모세포의 성장과 발달에 미치는 효과)

  • Choi, Yun-Jung;Min, Gyesik
    • Journal of Life Science
    • /
    • v.29 no.1
    • /
    • pp.105-111
    • /
    • 2019
  • In recent years, progress has been made in the search for the development of new anti-cancer agents by employing specific inhibitors of histone deacetylase (HDAC)-6 to block signal transduction pathways in cancer cells. This study examined the effects of tubastatin A (TubA), an HDAC-6 inhibitor, on the growth and development of immature oocytes in murine ovaries using RNA sequencing analysis. The results from a gene set enrichment analysis (GSEA) indicated that the expression of most of the gene sets involved in the cell cycle and control and progression of meiosis decreased in the TubA-treated group as compared with that in germinal vesicle (GV) stage oocytes. In addition, an ingenuity pathway analysis (IPA) suggested that TubA not only caused increased expression of p53 and pRB and decreased expression of CDK4/6 and cyclin D but also caused elevated expression of genes involved in the control of the DNA check point in G2/M stage oocytes. These results suggest that TubA may induce cell cycle arrest and apoptosis through the induction of changes in the expression of genes involved in signal transduction pathways associated with DNA damage and the cell cycle of immature oocytes in the ovary.

Weighted Gene Co-expression Network Analysis in Identification of Endometrial Cancer Prognosis Markers

  • Zhu, Xiao-Lu;Ai, Zhi-Hong;Wang, Juan;Xu, Yan-Li;Teng, Yin-Cheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.9
    • /
    • pp.4607-4611
    • /
    • 2012
  • Objective: Endometrial cancer (EC) is the most common gynecologic malignancy. Identification of potential biomarkers of EC would be helpful for the detection and monitoring of malignancy, improving clinical outcomes. Methods: The Weighted Gene Co-expression Network Analysis method was used to identify prognostic markers for EC in this study. Moreover, underlying molecular mechanisms were characterized by KEGG pathway enrichment and transcriptional regulation analyses. Results: Seven gene co-expression modules were obtained, but only the turquoise module was positively related with EC stage. Among the genes in the turquoise module, COL5A2 (collagen, type V, alpha 2) could be regulated by PBX (pre-B-cell leukemia homeobox 1)1/2 and HOXB1(homeobox B1) transcription factors to be involved in the focal adhesion pathway; CENP-E (centromere protein E, 312kDa) by E2F4 (E2F transcription factor 4, p107/p130-binding); MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived [avian]) by PAX5 (paired box 5); and BCL-2 (B-cell CLL/lymphoma 2) and IGFBP-6 (insulin-like growth factor binding protein 6) by GLI1. They were predicted to be associated with EC progression via Hedgehog signaling and other cancer related-pathways. Conclusions: These data on transcriptional regulation may provide a better understanding of molecular mechanisms and clues to potential therapeutic targets in the treatment of EC.

Identification of Gene Expression Signatures in the Chicken Intestinal Intraepithelial Lymphocytes in Response to Herb Additive Supplementations

  • Won, Kyeong-Hye;Song, Ki-Duk;Park, Jong-Eun;Kim, Duk-Kyung;Na, Chong-Sam
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1515-1521
    • /
    • 2016
  • Anethole and garlic have an immune modulatory effects on avian coccidiosis, and these effects are correlated with gene expression changes in intestinal epithelial lymphocytes (IELs). In this study, we integrated gene expression datasets from two independent experiments and investigated gene expression profile changes by anethole and garlic respectively, and identified gene expression signatures, which are common targets of these herbs as they might be used for the evaluation of the effect of plant herbs on immunity toward avian coccidiosis. We identified 4,382 and 371 genes, which were differentially expressed in IELs of chickens supplemented with garlic and anethole respectively. The gene ontology (GO) term of differentially expressed genes (DEGs) from garlic treatment resulted in the biological processes (BPs) related to proteolysis, e.g., "modification-dependent protein catabolic process", "proteolysis involved in cellular protein catabolic process", "cellular protein catabolic process", "protein catabolic process", and "ubiquitin-dependent protein catabolic process". In GO analysis, one BP term, "Proteolysis", was obtained. Among DEGs, 300 genes were differentially regulated in response to both garlic and anethole, and 234 and 59 genes were either up- or down-regulated in supplementation with both herbs. Pathway analysis resulted in enrichment of the pathways related to digestion such as "Starch and sucrose metabolism" and "Insulin signaling pathway". Taken together, the results obtained in the present study could contribute to the effective development of evaluation system of plant herbs based on molecular signatures related with their immunological functions in chicken IELs.

Ecological Characteristics of the Epiphytes on Seagrass - II. Effects of Physico-chemical Factors on Eelgrass (Zostera marina L.) and Epiphytes (해초에 부착하는 부착생물 군집의 생태학적 특성 - II. 물리화학적 요인이 잘피 및 부착생물에 미치는 영향)

  • Chung, Mi Hee;Youn, Seok-Hyun
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.3
    • /
    • pp.272-279
    • /
    • 2012
  • This was the second study on the ecological characteristics of the epiphytes on seagrass leaf. The objective of this study was to understand the variation of epiphytes on seagrass leaf depending on the change of physico-chemical factors such as salinity, nutrients, and etc. This study showed the four results. 1) The eelgrass growth was influenced by water temperature, suggesting the positive correlation between eelgrass growth and water temperature. 2) The epiphytes growth on seagrass leaves did not show the correlation with water temperature, but negatively correlated with salinity. 3) The eelgrass growth decreased when the concentraion of nitrogen increased. 4) However, loads of epiphytes increased when the concentration of total nitogen (TN), nitrate ($NO_3^-$), and nitrite ($NO_2^-$) were high. This increase of epiphytes growth could be suggested in the cause-effect pathway of nutrient enrichment leading to seagrasses loss.

Transcriptomic Features of Echinococcus granulosus Protoscolex during the Encystation Process

  • Fan, Junjie;Wu, Hongye;Li, Kai;Liu, Xunuo;Tan, Qingqing;Cao, Wenqiao;Liang, Bo;Ye, Bin
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.3
    • /
    • pp.287-299
    • /
    • 2020
  • Cystic echinococcosis (CE) is a zoonotic infection caused by Echinococcus granulosus larvae. It seriously affects the development of animal husbandry and endangers human health. Due to a poor understanding of the cystic fluid formation pathway, there is currently a lack of innovative methods for the prevention and treatment of CE. In this study, the protoscoleces (PSCs) in the encystation process were analyzed by high-throughput RNA sequencing. A total of 32,401 transcripts and 14,903 cDNAs revealed numbers of new genes and transcripts, stage-specific genes, and differently expressed genes. Genes encoding proteins involved in signaling pathways, such as putative G-protein coupled receptor, tyrosine kinases, and serine/threonine protein kinase, were predominantly up-regulated during the encystation process. Antioxidant enzymes included cytochrome c oxidase, thioredoxin glutathione, and glutathione peroxidase were a high expression level. Intriguingly, KEGG enrichment suggested that differentially up-regulated genes involved in the vasopressin-regulated water reabsorption metabolic pathway may play important roles in the transport of proteins, carbohydrates, and other substances. These results provide valuable information on the mechanism of cystic fluid production during the encystation process, and provide a basis for further studies on the molecular mechanisms of growth and development of PSCs.

PRaDA : Web-based analyzer for Pathway Relation and Disease Associated SNP (웹 기반 단일염기다형성 연관 패스웨이 분석 도구)

  • Yu, Kijin;Park, Soo Ho;Ryu, Keun Ho
    • Journal of Digital Contents Society
    • /
    • v.19 no.9
    • /
    • pp.1795-1801
    • /
    • 2018
  • Genome-Wide Association Study (GWAS) have been used to identify susceptibility genes for complex human diseases and many recent studies succeed to report common genetic factors for various diseases. Unfortunately, it is hard to understand all biological functions and mechanisms around the complex disease with GWAS only although the number of known associated genes with diseases is increased drastically because GWAS is a single locus based approach while not a gene but numerous factors may affect a disease associated pathways. PRaDA generates a combined report with genes, pathways and Gene Ontology (GO) using single nucleotide polymorphism (SNP) analysis output. The PRaDA reports not only directly associated pathways but also functionally related ones for identifying accumulated effects of low p-value SNPs. Through integrated information including indirect functional effects, user could have insights of overall disease mechanisms and markers.