DOI QR코드

DOI QR Code

Transcriptomic Features of Echinococcus granulosus Protoscolex during the Encystation Process

  • Fan, Junjie (Department of Pathogenic Biology, Chongqing Medical University) ;
  • Wu, Hongye (Department of Pathogenic Biology, Chongqing Medical University) ;
  • Li, Kai (Department of Pathogenic Biology, Chongqing Medical University) ;
  • Liu, Xunuo (Department of Pathogenic Biology, Chongqing Medical University) ;
  • Tan, Qingqing (Department of Pathogenic Biology, Chongqing Medical University) ;
  • Cao, Wenqiao (Department of Pathogenic Biology, Chongqing Medical University) ;
  • Liang, Bo (Chongqing No.18 Middle School) ;
  • Ye, Bin (Department of Pathogenic Biology, Chongqing Medical University)
  • Received : 2020.02.03
  • Accepted : 2020.04.07
  • Published : 2020.06.30

Abstract

Cystic echinococcosis (CE) is a zoonotic infection caused by Echinococcus granulosus larvae. It seriously affects the development of animal husbandry and endangers human health. Due to a poor understanding of the cystic fluid formation pathway, there is currently a lack of innovative methods for the prevention and treatment of CE. In this study, the protoscoleces (PSCs) in the encystation process were analyzed by high-throughput RNA sequencing. A total of 32,401 transcripts and 14,903 cDNAs revealed numbers of new genes and transcripts, stage-specific genes, and differently expressed genes. Genes encoding proteins involved in signaling pathways, such as putative G-protein coupled receptor, tyrosine kinases, and serine/threonine protein kinase, were predominantly up-regulated during the encystation process. Antioxidant enzymes included cytochrome c oxidase, thioredoxin glutathione, and glutathione peroxidase were a high expression level. Intriguingly, KEGG enrichment suggested that differentially up-regulated genes involved in the vasopressin-regulated water reabsorption metabolic pathway may play important roles in the transport of proteins, carbohydrates, and other substances. These results provide valuable information on the mechanism of cystic fluid production during the encystation process, and provide a basis for further studies on the molecular mechanisms of growth and development of PSCs.

Keywords

References

  1. Zhang W, Zhang Z, Wu W, Shi B, Li J, Zhou X, Wen H, McManus DP. Epidemiology and control of echinococcosis in central Asia, with particular reference to the People's Republic of China. Acta Trop 2015;141: 235-243. https://doi.org/10.1016/j.actatropica.2014.03.014
  2. Siyadatpanah A, Anvari D, Emami Zeydi A, Hosseini SA, Daryani A, Sarvi S, Budke CM, Esmaeelzadeh Dizaji R, Mohaghegh MA, Kohansal MH, Dodangeh S, Saberi R, Gholami S. A systematic review and meta-analysis of the genetic characterization of human echinococcosis in Iran, an endemic country. Epidemiol Health 2019; 41: e2019024. https://doi.org/10.4178/epih.e2019024
  3. Mahmoudi S, Mamishi S, Banar M, Pourakbari B, Keshavarz H. Epidemiology of echinococcosis in Iran: a systematic review and meta-analysis. BMC Infect Dis 2019; 19: 929. https://doi.org/10.1186/s12879-019-4458-5
  4. Filippou D, Tselepis D, Filippou G, Papadopoulos V. Advances in liver echinococcosis: diagnosis and treatment. Clin Gastroenterol Hepatol 2007; 5: 152-159. https://doi.org/10.1016/j.cgh.2006.08.017
  5. Xing G, Zhang H, Liu C, Guo Z, Yang X, Wang Z, Wang B, Lei Y, Yang R, Jiang Y, Lv H. Sodium arsenite augments sensitivity of Echinococcus granulosus protoscoleces to albendazole. Exp Parasitol 2019; 200: 55-60. https://doi.org/10.1016/j.exppara.2019.02.008
  6. El-On J. Benzimidazole treatment of cystic echinococcosis. Acta Trop 2003; 85: 243-252. https://doi.org/10.1016/S0001-706X(02)00217-6
  7. Thompson RCA. Biology and systematics of Echinococcus. Adv Parasitol 2017; 95: 65-109. https://doi.org/10.1016/bs.apar.2016.07.001
  8. Albani CM, Elissondo MC, Cumino AC, Chisari A, Denegri GM. Primary cell culture of Echinococcus granulosus developed from the cystic germinal layer: biological and functional characterization. Int J Parasitol 2010; 40: 1269-1275. https://doi.org/10.1016/j.ijpara.2010.03.008
  9. Diaz A, Casaravilla C, Allen JE, Sim RB, Ferreira AM. Understanding the laminated layer of larval Echinococcus II: immunology. Trends Parasitol 2011; 27: 264-273. https://doi.org/10.1016/j.pt.2011.01.008
  10. Diaz A, Casaravilla C, Irigoin F, Lin G, Previato JO, Ferreira F. Understanding the laminated layer of larval Echinococcus I: Structure. Trends Parasitol 2011; 27: 204-213. https://doi.org/10.1016/j.pt.2010.12.012
  11. Ronza P, Robledo D, Bermudez R, Losada AP, Pardo BG, Sitja-Bobadilla A, Quiroga MI, Martinez P. RNA-seq analysis of early enteromyxosis in turbot (Scophthalmus maximus): new insights into parasite invasion and immune evasion strategies. Int J Parasitol 2016; 46: 507-517. https://doi.org/10.1016/j.ijpara.2016.03.007
  12. Parkinson J, Wasmuth JD, Salinas G, Bizarro CV., Sanford C, Berriman M, Ferreira HB, Zaha A, Blaxter ML, Maizels RM, Fernandez C. A transcriptomic analysis of Echinococcus granulosus larval stages: implications for parasite biology and host adaptation. PLoS Negl Trop Dis 2012; 6: e1897. https://doi.org/10.1371/journal.pntd.0001897
  13. Liu S, Zhou X, Hao L, Piao X, Hou N, Chen Q. Genome-wide transcriptome analysis reveals extensive alternative splicing events in the protoscoleces of Echinococcus granulosus and Echinococcus multilocularis. Front Microbiol 2017; 8: 1-14.
  14. Tsai IJ, Zarowiecki M, Holroyd N, Garciarrubio A, Sanchez-Flores A, Brooks KL, Tracey A, Bobes RJ, Fragoso G, Sciutto E, Aslett M, Beasley H, Bennett HM, Cai X, Camicia F, Clark R, Chcher M, De Silva N, Day TA, Deplazes P, Estrada K, Fernandez C, Holland PWH, Hou J, Hu S, Huckvale T, Hung SS, Kamenetzky L, Keane JA, Kiss F, Koziol U, Lambert O, Liu K, Luo X, Luo Y, Macchiaroli N, Nichol S, Paps J, Parkinson J, Pouchkina-Stantcheva N, Riddiford N, Rosenzvit M, Salinas G, Wasmuth JD, Zamanian M, Zheng Y, Cai J, Soberon X, Olson PD, Laclette JP, Brehm K, Berriman M. The genomes of four tapeworm species reveal adaptations to parasitism. Nature 2013; 496: 57-63. https://doi.org/10.1038/nature12031
  15. Debarba JA, Monteiro KM, Moura H, Barr JR, Ferreira HB, Zaha A. Identification of newly synthesized proteins by Echinococcus granulosus protoscoleces upon induction of strobilation. PLoS Negl Trop Dis 2015; 9: 1-18.
  16. Liu C, Yin J, Xue J, Tao Y, Hu W, Zhang H. In vitro effects of amino alcohols on Echinococcus granulosus. Acta Trop 2018; 182: 285-290. https://doi.org/10.1016/j.actatropica.2017.08.031
  17. Elissondo MC, Dopchiz MC, Brasesco M, Denegri G. Echinococcus granulosus: first report of microcysts formation from protoscoleces of cattle origin using the in vitro vesicular culture technique. Parasite 2004; 11: 415-418. https://doi.org/10.1051/parasite/2004114415
  18. Li H, Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 2009; 25: 1754-1760. https://doi.org/10.1093/bioinformatics/btp324
  19. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions, and gene fusions. Genome Biol 2013; 14: R36. https://doi.org/10.1186/gb-2013-14-4-r36
  20. Zhu Y, Cao X, Zhang X, Chen Q, Wen L, Wang P. DNA methylation-mediated klotho silencing is an independent prognostic biomarker of head and neck squamous carcinoma. Cancer Manag Res 2019; 11: 1383-1390. https://doi.org/10.2147/CMAR.S188415
  21. Lateef A, Prabhudas SK, Natarajan P. RNA sequencing and de novo assembly of Solanum trilobatum leaf transcriptome to identify putative transcripts for major metabolic pathways. Sci Rep 2018; 8: 15375. https://doi.org/10.1038/s41598-018-33693-4
  22. Wang L, Feng Z, Wang X, Wang X, Zhang X. DEGseq: An R package for identifying differentially expressed genes from RNA-seq data. Bioinformatics 2010; 26: 136-138. https://doi.org/10.1093/bioinformatics/btp612
  23. He JJ, Ma J, Elsheikha HM, Song HQ, Huang SY, Zhu XQ. Transcriptomic analysis of mouse liver reveals a potential hepato-enteric pathogenic mechanism in acute Toxoplasma gondii infection. Parasit Vectors 2016; 9: 1-13. https://doi.org/10.1186/s13071-015-1291-6
  24. Phuphisut O, Ajawatanawong P, Limpanont Y, Reamtong O, Nuamtanong S, Ampawong S, Chaimon S, Dekumyoy P, Watthanakulpanich D, Swierczewski BE, Adisakwattana P. Transcriptomic analysis of male and female Schistosoma mekongi adult worms. Parasit Vectors 2018; 11: 504. https://doi.org/10.1186/s13071-018-3086-z
  25. Fen W, Xunuo L, Hongye W, Kai L, Junjie F, Bin Y. Identification of optimal reference genes during development of hydatid cysts from protoscoleces and transcriptional expression of candidate aquaporins. J Third Mil Med Univ 2018; 40: 1533-1541 (in Chinese).
  26. Yoo WG, Kim TI, Li S, Kwon OS, Cho PY, Kim TS, Kim K, Hong SJ. Reference genes for quantitative analysis on Clonorchis sinensis gene expression by real-time PCR. Parasitol Res 2009; 104: 321-328. https://doi.org/10.1007/s00436-008-1195-x
  27. Guo B, Zhang Z, Zheng X, Guo Y, Guo G, Zhao L, Ren C, Wang B, Yang M, Shou X, Zhang W, Jia B. Prevalence and molecular characterization of Echinococcus granulosus sensu stricto in Northern Xinjiang, China. Korean J Parasitol 2019; 57: 153-159. https://doi.org/10.3347/kjp.2019.57.1.153
  28. Mandal S, Deb Mandal M. Human cystic echinococcosis: epidemiologic, zoonotic, clinical, diagnostic and therapeutic aspects. Asian Pac J Trop Med 2012; 5: 253-60. https://doi.org/10.1016/S1995-7645(12)60035-2
  29. Daneshpour S, Kefayat A, Mofid M, Rostami Rad S, Yousofi Darani H. Effect of hydatid cyst fluid antigens on induction of apoptosis on breast cancer cells. Adv Biomed Res 2019; 8: 27. https://doi.org/10.4103/abr.abr_220_18
  30. Mandal S, Deb Mandal M. Human cystic echinococcosis: epidemiologic, zoonotic, clinical, diagnostic and therapeutic aspects. Asian Pac J Trop Med 2012; 5: 253-260. https://doi.org/10.1016/S1995-7645(12)60035-2
  31. Dezaki ES, Yaghoubi MM, Spiliotis M. Comparison of ex vivo harvested and in vitro cultured materials from Echinococcus granulosus by measuring expression levels of five genes putatively involved in the development and maturation of adult worms. Parasitol Res 2016; 115: 4405-4416. https://doi.org/10.1007/s00436-016-5228-6
  32. Huang Y, Xiong JL, Gao XC, Sun XH. Transcriptome analysis of the Chinese giant salamander (Andrias davidianus) using RNA-sequencing. Genomics Data 2017; 14: 126-131. https://doi.org/10.1016/j.gdata.2017.10.005
  33. Zheng H, Zhang W, Zhang L, Zhang Z, Li J, Lu G, Zhu Y, Wang Y, Huang Y, Liu J, Kang H, Chen J, Wang L, Chen A, Yu S, Gao Z, Jin L, Gu W, Wang Z, Zhao L, Shi B, Wen H, Lin R, Jones MK, Brejova B, Vinar T, Zhao G, McManus DP, Chen Z, Zhou Y, Wang S. The genome of the hydatid tapeworm Echinococcus granulosus. Nat Genet 2013; 45: 1168-1175. https://doi.org/10.1038/ng.2757
  34. Almeida GT, Amaral MS, Beckedorff FCF, Kitajima JP, DeMarco R, Verjovski-Almeida S. Exploring the Schistosoma mansoni adult male transcriptome using RNA-seq. Exp Parasitol 2012; 132: 22-31. https://doi.org/10.1016/j.exppara.2011.06.010
  35. Li WH, Zhang NZ, Yue L, Yang Y, Li L, Yan HB, Li TT, Qu ZG, Jia WZ, Fu BQ. Transcriptomic analysis of the larva Taenia multiceps. Res Vet Sci 2017;115:407-411. https://doi.org/10.1016/j.rvsc.2017.07.002
  36. Camicia F, Celentano AM, Johns ME, Chan JD, Maldonado L, Vaca H, Di Siervi N, Kamentezky L, Gamo AM, Ortega-Gutierrez S, Martin-Fontecha M, Davio C, Marchant JS, Rosenzvit MC. Unique pharmacological properties of serotoninergic G-protein coupled receptors from cestodes. PLoS Negl Trop Dis 2018;12: 1-27.
  37. de Saram PSR, Ressurreicao M, Davies AJ, Rollinson D, Emery AM, Walker AJ. Functional mapping of protein kinase A reveals its importance in adult Schistosoma mansoni motor activity. PLoS Negl Trop Dis 2013;7:e1988. https://doi.org/10.1371/journal.pntd.0001988
  38. Vorontsova YL, Slepneva IA, Yurlova NI, Ponomareva NM, Glupov VV. The effect of trematode infection on the markers of oxidative stress in the offspring of the freshwater snail Lymnaea stagnalis. Parasitol Res 2019; 118: 3561-3564. https://doi.org/10.1007/s00436-019-06494-5
  39. Ty MC, Zuniga M, Gotz A, Kayal S, Sahu PK, Mohanty A, Mohanty S, Wassmer SC, Rodriguez A. Malaria inflammation by xanthine oxidase-produced reactive oxygen species. EMBO Mol Med 2019; 11: e9903.
  40. Sayed AA, Williams DL. Biochemical characterization of 2-cys peroxiredoxins from Schistosoma mansoni. J Biol Chem. 2004; 279: 26159-26166. https://doi.org/10.1074/jbc.M401748200
  41. Cancela M, Paes JA, Moura H, Barr JR, Zaha A, Ferreira HB. Unraveling oxidative stress response in the cestode parasite Echinococcus granulosus. Sci Rep 2019; 9: 15876. https://doi.org/10.1038/s41598-019-52456-3
  42. Zalewska A, Ziembicka D, Zendzian-Piotrowska M, Maciejczyk M. The Impact of high-fat diet on mitochondrial function, free radical production, and nitrosative stress in the salivary glands of wistar rats. Oxid Med Cell Longev 2019; 2019: 1-15.
  43. Ozcan C, LI Z, Kim G, Jeevanandam V, Uriel N. Molecular mechanism of the association between atrial fibrillation and heart failure includes energy metabolic dysregulation due to mitochondrial dysfunction. J Card Fail 2019; 25: 911-920. https://doi.org/10.1016/j.cardfail.2019.08.005
  44. Li Y, Li P, Peng Y, Wu Q, Huang F, Liu X, Li X, Zhou H, Guo D, Shi D, Zhou XN, Fan X. Expression, characterization and crystal structure of thioredoxin from Schistosoma japonicum. Parasitology 2015; 142: 1044-1052. https://doi.org/10.1017/S0031182015000244
  45. Wilkinson SR, Horn D, Prathalingam SR, Kelly JM. RNA interference identifies two hydroperoxide metabolizing enzymes that are essential to the bloodstream form of the African trypanosome. J Biol Chem 2003; 278: 31640-31646. https://doi.org/10.1074/jbc.M303035200
  46. Bombaca ACS, Brunoro GVF, Dias-Lopes G, Ennes-Vidal V, Carvalho PC, Perales J, d'Avila-Levy CM, Valente RH, Menna-Barreto RFS. Glycolytic profile shift and antioxidant triggering in symbiont-free and H2O2-resistant Strigomonas culicis. Free Radic Biol Med 2020; 146: 392-401. https://doi.org/10.1016/j.freeradbiomed.2019.11.025
  47. Lopez-Gonzalez V, La-Rocca S, Arbildi P, Fernandez V. Characterization of catalytic and non-catalytic activities of EgGST2-3, a heterodimeric glutathione transferase from Echinococcus granulosus. Acta Trop 2018; 180: 69-75. https://doi.org/10.1016/j.actatropica.2018.01.007
  48. Gaba S, Jamal S, Open Source Drug Discovery Consortium, Scaria V. Cheminformatics models for inhibitors of Schistosoma mansoni thioredoxin glutathione reductase. Sci World J 2014; 2014: 1-9.
  49. Santos GB do, Monteiro KM, da Silva ED, Battistella ME, Ferreira HB, Zaha A. Excretory/secretory products in the Echinococcus granulosus metacestode: is the intermediate host complacent with infection caused by the larval form of the parasite? Int J Parasitol 2016; 46: 843-856. https://doi.org/10.1016/j.ijpara.2016.07.009
  50. Inokuma K, Kurono H, den Haan R, van Zyl WH, Hasunuma T, Kondo A. Novel strategy for anchorage position control of GPI-attached proteins in the yeast cell wall using different GPI-anchoring domains. Metab Eng 2020; 57: 110-117. https://doi.org/10.1016/j.ymben.2019.11.004
  51. Phung LT, Chaiyadet S, Hongsrichan N, Sotillo J, Dieu HDT, Tran CQ, Brindley PJ, Loukas A, Laha T. Recombinant Opisthorchis viverrini tetraspanin expressed in Pichia pastoris as a potential vaccine candidate for opisthorchiasis. Parasitol Res 2019; 118: 3419-3427. https://doi.org/10.1007/s00436-019-06488-3
  52. Tomii K, Santos HJ, Nozaki T. Genome-wide analysis of known and potential tetraspanins in Entamoeba histolytica. Genes (Basel) 2019; 10: E885.
  53. Coakley G, Maizels RM, Buck AH. Exosomes and other extracellular vesicles: the new communicators in parasite infections. Trends Parasitol 2015; 31: 477-489. https://doi.org/10.1016/j.pt.2015.06.009
  54. Siles-Lucas M, Sanchez-Ovejero C, Gonzalez-Sanchez M, Gonzalez E, Falcon-Perez JM, Boufana B, Fratini F, Casulli A, Manzano-Roman R. Isolation and characterization of exosomes derived from fertile sheep hydatid cysts. Vet Parasitol 2017; 236: 22-33. https://doi.org/10.1016/j.vetpar.2017.01.022
  55. Park EJ, Kwon TH. A Minireview on vasopressin-regulated aquaporin-2 in kidney collecting duct cells. Electrolytes Blood Press 2015; 13: 1. https://doi.org/10.5049/ebp.2015.13.1.1
  56. Horgan CP, Hanscom SR, Jolly RS, Futter CE, McCaffrey MW. Rab11-FIP3 binds dynein light intermediate chain 2 and its overexpression fragments the Golgi complex. Biochem Biophys Res Commun 2010; 394: 387-392. https://doi.org/10.1016/j.bbrc.2010.03.028
  57. Fox AR, Maistriaux LC, Chaumont F. Toward understanding of the high number of plant aquaporin isoforms and multiple regulation mechanisms. Plant Sci 2017; 264: 179-187. https://doi.org/10.1016/j.plantsci.2017.07.021
  58. Huang Y, Li W, Lu W, Xiong C, Yang Y, Yan H, Liu KC, Cao P. Cloning and in vitro characterization of a Schistosoma japonicum aquaglyceroporin that functions in osmoregulation. Sci Rep 2016; 6: 1-8. https://doi.org/10.1038/s41598-016-0001-8
  59. Faghiri Z, Camargo SM, Huggel K, Forster IC, Ndegwa D, Verrey F, Skelly PJ. The tegument of the human parasitic worm Schistosoma mansoni as an excretory organ: the surface aquaporin SmAQP is a lactate transporter. PLoS One 2010; 5: e10451. https://doi.org/10.1371/journal.pone.0010451

Cited by

  1. Synergism therapeutic and immunoregulatory effects of Albendazole + rAd-mIL-28B against Echinococcosis in experiment-infected mice with protoscoleces vol.15, pp.11, 2020, https://doi.org/10.1371/journal.pntd.0009927
  2. Genome-wide transcriptome analysis of the early developmental stages of Echinococcus granulosus protoscoleces reveals extensive alternative splicing events in the spliceosome pathway vol.14, pp.1, 2020, https://doi.org/10.1186/s13071-021-05067-9