• Title/Summary/Keyword: pathogenic indicator

Search Result 64, Processing Time 0.021 seconds

Assessment of the ozonation against pathogenic bacteria in the effluent of the quarantine station

  • Park, Seon Yeong;Kim, Joo Han;Kim, Chang Gyun
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.13 no.1
    • /
    • pp.10-19
    • /
    • 2021
  • This study investigated how ozone treatment can successfully inactivate pathogenic bacteria in both artificial seawater and effluents discharged from the fishery quarantine station in Pyeongtaek Port, Korea. Vibrio sp. and Streptococcus sp. were initially inoculated into the artificial seawater. All microbes were almost completely inactivated within 10 min and 30 min by injecting 6.4 mg/min and 2.0 mg/min of ozone, respectively. It was discovered that the water storing Pleuronichthys, Pelteobagrus, and Cyprinus imported from China contained the indicator bacteria, Vibrio sp., Enterococcus sp., total coliforms, and heterotrophic microorganisms. Compared to the control, three indicator bacteria were detected at two to six times higher concentrations. The water samples displayed a diverse microbial community, comprising the following four phyla: Bacteroidetes, Proteobacteria, Firmicutes, and Actinobacteria. Almost all indicator bacteria were inactivated in 5 min at 2.0 mg/min of ozonation; comparatively, 92.9%-98.2% of the less heterotrophic microorganisms were deactivated within the same time period. By increasing the dosage to 6.4 mg/min, 100% deactivation was achieved after 10 min. Despite the almost complete inactivation of most indicator bacteria at high doses after 10 min, several bacterial strains belonging to the Proteobacteria have still been found to be resistant under the given operational conditions.

Inactivation of various bacteriophages by different ultraviolet technologies: Development of a reliable virus indicator system for water reuse

  • Bae, Kyung Seon;Shin, Gwy-Am
    • Environmental Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.350-354
    • /
    • 2016
  • There is an urgent need to identify more reliable indicator systems for human pathogenic viruses in water reuse practice. In this study, we determined the response of different bacteriophages representing various bacteriophage groups to different ultraviolet (UV) technologies in real wastewater in order to identify more reliable bacteriophage indicator systems for UV disinfection in wastewater. Bacteriophage ${\varphi}X174$ PRD1, and MS2 in two different real wastewaters were irradiated with several doses of both low pressure (LP) and medium pressure (MP) UV irradiation through bench-scale UV collimated apparatus. The inactivation rate of ${\varphi}X174$ by both LP and MP UV was rapid and reached ${\sim}4{\log}_{10}$ within a UV dose of $20mJ/cm^2$. However, the inactivation rates of bacteriophage PRD1 and MS2 were much slower than the one for ${\varphi}X174$ and only ${\sim}1{\log}_{10}$ inactivation was achieved by the same UV dose of $20mJ/cm^2$. Overall, the results of this study suggest that bacteriophage MS2 could be a reliable indicator for human pathogenic viruses for both LP and MP UV disinfection in wastewater treatment processes and water reuse practice.

Distribution of Indicator Organisms and Incidence of Pathogenic Bacteria in Raw Beef Used for Korean Beef Jerky

  • Kim, Hyoun-Wook;Kim, Hye-Jung;Kim, Cheon-Jei;Paik, Hyun-Dong
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1337-1340
    • /
    • 2008
  • The objective of this study was to evaluate the microbial safety of raw beef used to produce Korean beef jerky, The raw beef samples harbored large populations of microorganisms. In particular, psychrophilic bacteria were found to be most numerous ($9.2{\times}10^3-1.0{\times}10^5\;CFU/g$) in the samples. Mesophilic bacteria and anaerobic bacteria were present in average numbers ($10^3-10^5\;CFU/g$). Spore-forming bacteria and coliforms were not detected below detection limit. Yeast and molds were detected at $2.2{\times}10^1-7.8{\times}10^2\;CFU/g$ in the raw beef. Ten samples of raw beef were analyzed for the presence of pathogenic bacteria. Bacillus cereus was isolated from sample B, G, and H. The B. cereus isolates from raw beef samples were identified with 99.8% agreement according to the API CHB 50 kit.

Inactivation of various bacteriophages in wastewater by chlorination; Development of more reliable bacteriophage indicator systems for water reuse (하수 처리 과정의 염소 소독에 대한 여러 박테리오파지들의 저항성 평가; 물 재이용 과정의 안전성 관리를 위한 바이러스 지표미생물의 개발)

  • Bae, Kyung-Seon;Shin, Gwy-Am
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.285-291
    • /
    • 2016
  • There has been an accelerating increase in water reuse due to growing world population, rapid urbanization, and increasing scarcity of water resources. However, it is well recognized that water reuse practice is associated with many human health and ecological risks due to numerous chemicals and pathogenic microorganisms. Especially, the potential transmission of infectious disease by hundreds of pathogenic viruses in wastewater is one of the most serious human health risks associated with water reuse. In this study, we determined the response of different bacteriophages representing various bacteriophage groups to chlorination in real wastewater in order to identify a more reliable bacteriophage indicator system for chlorination in wastewater. Different bacteriophages were spiked into secondary effluents from wastewater plants from three different geographic areas, and then subjected to various doses of free chlorine and contact time at $5^{\circ}C$ in a bench-scale batch disinfection system. The inactivation of ${\phi}X174$ was relatively rapid and reached ~4 log10 with a CT value of 5 mg/L*min. On the other hand, the inactivation of bacteriophage PRD1 and MS2 were much slower than the one for ${\phi}X174$ and only ~1 log10 inactivation was achieved by a CT value of 10 mg/L*min. Overall, the results of this study suggest that bacteriophage both MS2 and PRD1 could be a reliable indicator for human pathogenic viruses for chlorination in wastewater treatment processes and water reuse practice.

Analysis of Pathogenic Microorganism's Contamination on Organic Leafy Vegetables at Greenhouse in Korea (유기농 시설엽채류의 유해미생물 오염평가)

  • Oh, Soh-Young;Nam, Ki-Woong;Yoon, Deok-Hoon
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • This study was conducted to evaluate the microbiological safety of leafy vegetables (perilla leaf and lettuce) in relation to cultivation methods. A total of 2,304 samples were collected from plants, harvesting tools and soil mulching film during the production and harvest stages from organic- and conventional- farms. From the samples, sanitary indicator microorganisms (total aerobic bacteria, coliforms, E. coli., Environmental Listeria, and yeast and mold) and pathogenic microorganisms (S. aureus, B. cereus, Salmonella spp., Clostridium spp., and L. monocytogenes) were analyzed. In the production stage of leafy vegetables, the sanitary indicator microorganisms was not detected regardless of cultivation method or it was detected to be less than $3.4\;Log\;CFU/100cm^2$. B. cereus and S. aureus were found to be 0.22~1.55 Log CFU/g in perilla leaf and lettuce produced by organic farms, and S. aureus was not detected and B. cereus was found to be 0.42~2.19 Log CFU/g in conventional farms. There were no significant differences between two cultivation methods. In the harvesting tools and soil mulching film, the contamination levels of sanitary indicator microorganisms and pathogenic microorganisms was low regardless of the cultivation method. However, there was a positive correlation ($R^2=0.4526$) in that the higher the microbial contamination level in the harvesting tool, the higher the microbial contamination on the surface of the plant. In addition, sanitary indicator microorganisms and pathogenic microorganisms were not detected or low in soil mulching during the production of organic leafy vegetables. As a result of this study, microbial hygiene control by soil mulching and harvesting tools was more important than difference of cultivation method in production of leafy vegetables.

Applicability Investigation of E.coli, RNA and DNA Bacteriophages for Possible Indicator Microorganisms Based on the Inactivation Effectiveness by UV (UV 불활성화 효과에 의거한 E.coli, RNA 및 DNA 박테리오파지의 대체 지표 미생물로서의 적용성 검토)

  • Kim, Il-Ho;Wahid, Marfiah AB;Tanaka, Hiroaki
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.11
    • /
    • pp.1063-1068
    • /
    • 2010
  • This study compared UV and UV/$H_2O_2$ inactivation of E.coli, a possible indicator microorganism for fecal contamination of water, and $Q{\ss}$ phage, an indicator for pathogenic viruses. UV inactivation of $Q{\ss}$, T4 and lambda phages in actual secondary effluent was investigated, too. As a result, similar inactivation efficiency between $Q{\ss}$ phage and E.coli was observed during UV treatment, while $Q{\ss}$ phage showed higher resistance to UV/$H_2O_2$ than E.coli. $Q{\ss}$ phage resistance to UV or UV/$H_2O_2$ does not reflect those of all pathogenic viruses. However, the result tells that the use of E.coli inactivation efficiency in evaluating microbiological safety of water could not always ensure the sufficient safety from pathogenic viruses. Meanwhile, $Q{\ss}$ phage showed less resistance to UV than T4 and lambda phages, indicating that the use of $Q{\ss}$ phage as an indicator virus may bring insufficient disinfection effectiveness by causing the introduction of lower UV dose than required. Consequently, it can be thought that T4 or lambda phages would be more desirable indicators in ensuring the sufficient disinfection effectiveness for various pathogenic viruses.

Indicator Microorganisms Used as Fecal Contamination in Aquatic Environments (수계환경에서 분변성 오염의 지표로 사용되는 미생물들)

  • 이건형
    • Korean Journal of Environmental Biology
    • /
    • v.20 no.3
    • /
    • pp.189-196
    • /
    • 2002
  • The direct detection of intestinal pathogens and viruses often requires costly, tedious, and time-consuming procedures. These requirements developed a test to show that the water was contaminated with sewage-borne pathogens by assessing the hygienic quality of water based on indicator microorganisms whose presence indicates that pathogenic microorganisms may also be present. Various groups of microorganisms have been suggested and used as indicator microorganisms. Proposed and commonly used microbial indicators are total coliforms, fecal coliforms, fecal streptococci, Clostridium perfringens, heterotrophic plate count, bacteriophage, and so on. Unfortunately, most, if not all, of these indicators are not ideal because of the sensitivity and resistance to environment stresses and disinfection. However, the development of gene probes and PCR technology may give hope for the discovery of rapid and simple methods toy detecting small number of fecal pathogens in various environments.

Distribution of Pathogenic Vibrios and Environmental Factors Affecting Their Occurrence in the Seawater of Live Fish Tank (여름철 활어조 해수에서 병원성 비브리오균의 분포 및 환경인자와의 관계)

  • 김지희;박정흠;이태식;이희정;김성준
    • Journal of Food Hygiene and Safety
    • /
    • v.16 no.3
    • /
    • pp.241-246
    • /
    • 2001
  • Distribution of pathogenic vibrios in the seawater of live fish tank and effect of environmental factors on their existence were investigated by collecting samples from fish markets and restaurants in 6 different cities. Pathogenic vibrios and coliforms were determined by using the most probable number (MPN) procedure, and aerobic plate count was enumerated by the standard pour plate method. No Vibrio chulerae O1 was detected in all the samples tested. Detection rates of V. cholerae non-O1, V. parahaemolyticus and V. vulnificus in all the smaples tested were 7.7%, 69.2% and 23.1%, respectively. Water temperature and trubidity of the seawater measured were higher in the pathogenic vibrios positive samples than in those negative samples. However, higher salinity and pH were shown in the pathogenic vibrios negative samples than in positive samples. The aerobic plate counts and MPN or total and focal coliforms in the seawater were higher in the presence of pathogenic vibrios than in the absence of pathogenic vibrios. In this study, the presence of pathogenic vibrios in the seawater tested was closely related with other physiochemical parameters and populations of coliforms, indicators far food safety.

  • PDF

Sanitary Microbial Distribution at the Tomato Farms in Western Gyeongnam (서부 경남지역 토마토 농장에서의 위생 미생물의 분포)

  • Kim Jin-Soo;Shim Won-Bo;Kim Ji-Hun;Kim Se-Ri;Chung Duck-Hwa
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.1 s.88
    • /
    • pp.77-88
    • /
    • 2006
  • This study were conducted to investigate the microbial contamination level in 5 tomato farms in Western Gyeongnam. A total of 130 samples was examined for sanitary indicator bacteria, such as aerobic plate count (APC), coliforms, and Escherchia coli, and pathogenic bacteria such as E. coli O157:H7, Salmonella spp., Staphylococcus aureus, and Listeria monocytogenes. APC and coliform count ranged $0\~6.62\;and\;0\~4.52 log_{10}\;CFU/(ml,\;g,\;100\;cm^2,\;hand)$, respectively, and $32.5\%$ were contaminated with E. coli. Especially, most of the samples from employees are high as above $4.0\;log_{10}\;CFU/(ml,\;g,\;100\;cm^2,\;hand)$ in APC. S. aureus, detected at $10.7\%$, was found in employees' hands, irrigation water, and hydroponic solution. whereas E. coli $O157:H7$, Salmonella spp, and L. monocytogenes were not detected. These results will provide fundamental microbiological information for introduction of good agricultural practice (GAP)system in tomato farms.

Investigation of Microbial Safety and Correlations Between the Level of Sanitary Indicator Bacteria and the Detection Ratio of Pathogens in Agricultural Water (농업용수의 미생물학적 안전성 조사 및 위생지표세균 농도와 병원성미생물 검출률과의 상관관계 분석)

  • Hwang, Injun;Lee, Tae Kwon;Park, Daesoo;Kim, Eunsun;Choi, Song-Yi;Hyun, Jeong-Eun;Rajalingam, Nagendran;Kim, Se-Ri;Cho, Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.248-259
    • /
    • 2021
  • BACKGROUND: Contaminated water was a major source of food-borne pathogens in various recent fresh produce-related outbreaks. This study was conducted to investigate the microbial contamination level and correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water by logistic regression analysis. METHODS AND RESULTS: Agricultural water was collected from 457 sites including surface water (n=300 sites) and groundwater (n=157 sites) in South Korea from 2018 to 2020. Sanitary indicator bacteria (total coliform, fecal coliform, and Escherichia coli) and food-borne pathogens (pathogenic E. coli, E. coli O157:H7, Salmonella spp., and Listeria monocytogenes) were analyzed. In surface water, the coliform, fecal coliform, and E. coli were 3.27±0.89 log CFU/100 mL, 1.90±1.19 log CFU/100 mL, and 1.39±1.26 log CFU/100 mL, respectively. For groundwater, three kinds of sanitary indicators ranged in the level from 0.09 - 0.57 log CFU/100 mL. Pathogenic E. coli, Salmonella and Listeria monocytogenes were detected from 3%-site, 1.5%- site, and 0.6%-site water samples, respectively. According to the results of correlations between the level of sanitary indicator bacteria and the detection ratio of pathogens by logistic regression analysis, the probability of pathogen detection increased individually by 1.45 and 1.34 times as each total coliform and E. coli concentration increased by 1 log CFU/100mL. The accuracy of the model was 70.4%, and sensitivity and specificity were 81.5% and 51.7%, respectively. CONCLUSION(S): The results indicate the need to manage the microbial risk of agricultural water to enhance the safety of fresh produce. In addition, logistic regression analysis is useful to analyze the correlation between the level of sanitary indicator bacteria and the detection ratio of pathogens in agricultural water.