Acknowledgement
This research was part of a project entitled "Development of a water treatment system to remove harmful substances of ecological disturbances emitted from quarantine stations screening up imported fishery products" (No. 20180341) supported by the Korea Institute of Marine Science and Technology Promotion. It was also partially supported by INHA University Grant. In addition, the employed marine bacteria for the disinfection test were provided by the Korean Culture collection of Aquatic Microorganisms (KoCAM) under the National Institute of Fisheries Science.
References
- Food and Agriculture Organization of the United Nations (FAO). 2016. The state of world fisheries and aquaculture 2016: Contributing to food security and nutritions for all. Rome, 1-200.
- Ministry of Agriculture, Food and Rural Affairs, Korea Agro-Fisheries & Food Trade Corporation. 2018. Trends reports on the Imports and Exports of Agro-fisheries and Food 2017. Korea, 1-518.
- Litchman, E., 2010. Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems. Ecol. Lett. 13, 1560-1572. https://doi.org/10.1111/j.1461-0248.2010.01544.x
- Gollasch, S., Minchin, D., David, M. 2015. The transfer of harmful aquatic organisms and pathogens with ballast water and their impact. In: David M., Gollasch, S. (eds) Global Maritime Transport and Ballast Water Management. Invading Nature-Springer Series in Invasion Ecology, Springer. 8, 35-58.
- Seebens, H., Gastner, M.T., Blasius, B. 2013. The risk of marine bioinvasion caused by global shipping. Ecol. Lett. 16(6), 782-790. https://doi.org/10.1111/ele.12111
- Dobbs, F.C., Rogerson, A. 2005. Ridding ships' ballast water of microorganisms. Environ. Sci. Technol. 39(12), 259A-264A. https://doi.org/10.1021/es053300v
- International Maritime Organization (IMO). 2004. International Convention for the Control and Management of Ship's Ballast Water and Sediments.
- Drillet, G. 2016. Food security: Protect aquaculture from ship pathogens. Nature. 539(7627), 31. https://doi.org/10.1038/539031d
- Lymperopoulou, D.S., and Dobbs, F.C. 2017. Bacterial diversity in ships' ballast water, ballast-water exchange, and implications for ship-mediated dispersal of microorganisms. Environ. Sci. Technol. 51(4), 1692-1972.
- Khandeparker, L., Kuchi, N., Desai, D.V., and Anil, A.C. 2020. Changes in the ballast water tank bacterial community during a trans-sea voyage: Elucidation through next generation DNA sequencing. J. Environ. Manage. 273, 111018. https://doi.org/10.1016/j.jenvman.2020.111018
- Jung, Y., Yoon, Y., Hong, E., Kwon, M., and Kang, J. W. 2013. Inactivation characteristics of ozone and electrolysis process for ballast water treatment using B. subtilis spores as a probe. Mar. Pollut. Bull. 72(1), 71-79. https://doi.org/10.1016/j.marpolbul.2013.04.028
- Bai, M., Zheng, Q., Tian, Y., Zhang, Z., Chen, C., Cheng, C., and Meng, X. 2016. Inactivation of invasive marine species in the process of conveying ballast water using OH based on a strong ionization discharge. Water Res. 96, 217-224. https://doi.org/10.1016/j.watres.2016.03.056
- Romero-Martinez, L., Rivas-Zaballos, I., Moreno-Andres, J., Moreno-Garrido, I., Acevedo-Merino, A., and Nebot. E. 2020. Effect of length of dark storage following ultraviolet irradiation of Tetraselmis suecica and its implications for ballast water management, Sci. Total Environ. 711, 134611. https://doi.org/10.1016/j.scitotenv.2019.134611
- Maranda, L., Cox, A. M., Campbell, R. G., and Smith, D. C. 2013. Chlorine dioxide as a treatment for ballast water to control invasive species: Shipboard testing. Mar. Pollut. Bull. 75(1-2), 76-89. https://doi.org/10.1016/j.marpolbul.2013.08.002
- Goncalves, A. A., and Gagnon, G. A. 2011. Ozone application in recirculating aquaculture system: An overview. Ozone. Sci. Eng. 33(5), 345-367. https://doi.org/10.1080/01919512.2011.604595
- Shirafkan, A., Nowee, S. M., Ramezanian, N., and Etermadi, M. M. 2016. Hybrid coagulation/ozonation treatment of pharmaceutical wastewater using ferric chloride, polyaluminum chloride and ozone. Int. J. Environ. Sci. Technol. 13(6), 1443-1452. https://doi.org/10.1007/s13762-016-0965-8
- Mainardis, M., Buttazzoni, M., De Bortoli, N., Mion, M. and Goi, D. 2020. Evaluation of ozonation applicability to pulp and paper streams for a sustainable wastewater treatment. J. Clean. Prod. 258, 120781. https://doi.org/10.1016/j.jclepro.2020.120781
- Rahmadi, P., Kim, Y. R. 2013. Effects of different levels of ozone on ammonia, nitrite, nitrate, and dissolved organic carbon in sterilization of seawater. Desalination Water Treat. 52(22-24), 4413-4422. https://doi.org/10.1080/19443994.2013.803702
- Meays, C. L., Boersma, K., Nordin, R., and Mazumder, A. 2004. Source tracking fecal bacteria in the water: a critical review of current methods. J. Environ. Manage. 73(1), 71-79. https://doi.org/10.1016/j.jenvman.2004.06.001
- Fong, T. T., and Lipp, E. K. 2005. Enteric viruses of humans and animals in aquatic environments: health risks, detection, and potential water quality assessment tools. Microbiol. Mol. Biol. Rev. 69(2), 357-371. https://doi.org/10.1128/MMBR.69.2.357-371.2005
- Garcia-Garay, J., Franco-Herera, A., and Machuca-Martinez, F.. 2020. Wild microorganism and plankton decay in ballast water treatments by solar disinfection (SODIS) and advanced oxidation process. Mar. Pollut. Bull. 154, 111060. https://doi.org/10.1016/j.marpolbul.2020.111060
- Standard method 9222 (Membrane filter technique for members of the colfiorm group), 2005. American Public Health Association (APHA), 21th edition.
- Environmental standard for water quality ES040701.1e (Total coliform-membrane filtration method). 2021, Ministry of Environment.
- Jnug, S., Kim, M., Kim, J., Choi, H., Kim, J., Do, J., Han, H., Kwon, M., Seo, J., Hwang, J., Kim, N., and Song, J. 2015. Guidelines for diagnosis of bacterial diseases of aquatic animals. National Institute of Fisheries Science.
- Jung, Y., Hong. E., Yoon, Y., Kwon, M., and Kang, J. W. 2014. Formation of bromate and chlorate during ozonation and electrolysis in seawater for ballast water. Ozone. Sci. Eng. 36(6), 515-525. https://doi.org/10.1080/01919512.2014.956862
- Kim, H., Lee, H., Kim, C. M., and Jang, A. 2020. Enhancement of ozonation of seawater-based wastewater containing pharmaceutical compounds by total residual oxidants: salinity, ammonia, and organic matter. Chemosphere. 259, 127513. https://doi.org/10.1016/j.chemosphere.2020.127513
- Reed, P., and Evans, R. 1981. Acute toxicity of chlorides, sulfates, and total dissolved solids to some fishes in Illinois. Illinois Department of Energy and Natural Resource (ENR).
- Hess-Erga, O. -K., Blomvagnes-Bakke, B., and Vadstein, O. 2010. Recolonization by hetero-trophic bacteria after UV irradiation or ozonation of seawater; a simulation of ballast water treatment. Water Res. 44(18), 5439-5449. https://doi.org/10.1016/j.watres.2010.06.059
- Becrerra-Castro, C., Macedo, G., Silva, A. M. T., Manaia, C. M., and Nunes, O. C. 2016. Proteobacteria become predominant during regrowth after water disinfection, Sci. Total Environ. 573, 313-323. https://doi.org/10.1016/j.scitotenv.2016.08.054
- Moreno-Andres, J., Acevedo-Merino, A., and Nebot, E. 2018. Study of marine bacteria inactivation by photochemical process: disinfection kinetics and growth modeling after treatment. Environ. Sci. Pollut. Res. 25(28), 27693-27703. https://doi.org/10.1007/s11356-017-1185-6