• Title/Summary/Keyword: pasternak foundation

Search Result 282, Processing Time 0.025 seconds

Buckling of a single-layered graphene sheet embedded in visco-Pasternak's medium via nonlocal first-order theory

  • Zenkour, Ashraf M.
    • Advances in nano research
    • /
    • v.4 no.4
    • /
    • pp.309-326
    • /
    • 2016
  • The buckling response of a single-layered graphene sheet (SLGS) embedded in visco-Pasternak's medium is presented. The nonlocal first-order shear deformation elasticity theory is used for this purpose. The visco-Pasternak's medium is considered by adding the damping effect to the usual foundation model which characterized by the linear Winkler's modulus and Pasternak's (shear) foundation modulus. The SLGS be subjected to distributive compressive in-plane edge forces per unit length. The governing equilibrium equations are obtained and solved for getting the critical buckling loads of simply-supported SLGSs. The effects of many parameters like nonlocal parameter, aspect ratio, Winkler-Pasternak's foundation, damping coefficient, and mode numbers on the buckling analysis of the SLGSs are investigated in detail. The present results are compared with the corresponding available in the literature. Additional results are tabulated and plotted for sensing the effect of all used parameters and to investigate the visco-Pasternak's parameters for future comparisons.

Effect of Pasternak foundation: Structural modal identification for vibration of FG shell

  • Hussain, Muzamal;Selmi, Abdellatif
    • Advances in concrete construction
    • /
    • v.9 no.6
    • /
    • pp.569-576
    • /
    • 2020
  • Employment of the wave propagation approach with the combination of Pasternak foundation equation gives birth to the shell frequency equation. Mathematically, the integral form of the Lagrange energy functional is converted into a set of three partial differential equations. A cylindrical shell is placed on the elastic foundation of Pasternak. For isotropic materials, the physical properties are same everywhere, whereas the laminated and functionally graded materials, they vary from point to point. Here the shell material has been taken as functionally graded material. The influence of the elastic foundation, wave number, length and height-to-radius ratios is investigated with different boundary conditions. The frequencies of length-to-radius and height-to-radius ratio are counter part of each other. The frequency first increases and gain maximum value in the midway of the shell length and then lowers down for the variations of wave number. It is found that due to inducting the elastic foundation of Pasternak, the frequencies increases. It is also exhibited that the effect of frequencies is investigated by varying the surfaces with stainless steel and nickel as a constituent material. MATLAB software is utilized for the vibration of functionally graded cylindrical shell with elastic foundation of Pasternak and the results are verified with the open literature.

Vibration attenuation in periodic composite Timoshenko beams on Pasternak foundation

  • Xiang, Hong-Jun;Shi, Zhi-Fei
    • Structural Engineering and Mechanics
    • /
    • v.40 no.3
    • /
    • pp.373-392
    • /
    • 2011
  • Periodic and quasi-periodic Timoshenko beams on Pasternak foundation are investigated using the differential quadrature method. Not only band gaps in the beams but also the dynamic response of them is analyzed. Numerical results show that vibration in periodic beams can be dramatically attenuated when the exciting frequency falls into band gaps. Different from the band structures of periodic beams without foundation, the so-called critical frequency was found because of the Pasternak foundation. Its physical meaning was explained in detail and a useful formula was given to calculate the critical frequency. Additionally, a comprehensive parameter study is conducted to highlight the influence of foundation modulus on the band gaps.

Buckling and Vibration Analysis of Thick Plates with Concentrated Mass (집중 질량을 갖는 후판의 좌굴 및 진동해석)

  • 김일중;오숙경;이용수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.467-474
    • /
    • 2001
  • This paper is for the buckling and vibration analysis of thick plate with concentrated mass on a inhomogeneous pasternak foundation. A thick rectangular plate resting on a inhomogeneous pasternak foundation is isotropic, homogeneous and composite with linearly elastic material. In order to analyize plate which is supported on inhomogeneous pasternak foundation, the value of winkler foundation parameter(WFP) of centural and border zone of plate are chosen as Kwl and Kw2 respectively. The value of Kwl and Kw2 can be changed as 0, 10, 10 /sup 2/, 10 / sup 3/ and the value of SFP(shear foundation parameter) also be changed 0, 5, 10, 15 respectively. Finally, In this paper, buckling stress of rectangular plate on the inhomogeneous pasternak foundation, natural frequency of this plate with or without uniform in-plane axial stresses are calculated

  • PDF

Flexural-Torsional Free Vibrations of Circular Strip Foundation with Variable Breadth on Pasternak Soil (Pasternak지반으로 지지된 변화폭 원호형 띠기초의 휨-비틀림 자유진동)

  • Lee, Byoung Koo;Park, Kwang Kyou;Kang, Hee Jong;Yoon, Hee Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.539-548
    • /
    • 2007
  • This paper deals with flexural-torsional free vibrations of the circular strip foundation with the variable breadth on Pasternak soil. The cross-section of the strip foundation is chosen as the rectangular one with the constant thickness and variable breadth, which is symmetrical about the mid-arc. Also, the foundation that supports the circular strip is modeled as the Pasternak soil with the shear layer. Ordinary differential equations accompanying the boundary conditions are derived. In the governing equations, the transverse, rotatory and torsional inertias are included. These equations are solved numerically and four lowest frequencies are obtained. In the numerical results, the effects of foundation parameters on frequencies are extensively investigated. It is expected that the theories and numerical results of this study can be used in the dynamic design of strip foundations.

Free Vibration Analysis of Thin Plate on Inhomogeneous Pasternak Foundation (비균질 Pasternak 지반위에 얹혀진 박판의 자유진동 해석)

  • Kim, Il-Jung;Lee, Young-Soo;Oh, Soog-Kyoung;Lee, Hoy-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.395.2-395
    • /
    • 2002
  • Recently, as size of building structure becomes larger, mat area of building structure is supported on Inhomogeneous foundation. The equipment machineries in building are mostly on basement story. The slab of the lowest basement story with equipment machineries is considerded as concentrated masses on plate supported on foundation. In this paper. vibration analysis of rectangular thin plate is done by use of rectangular finite element with 4 nodes. (omitted)

  • PDF

Stability of EG cylindrical shells with shear stresses on a Pasternak foundation

  • Najafov, A.M.;Sofiyev, A.H.;Hui, D.;Karaca, Z.;Kalpakci, V.;Ozcelik, M.
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.453-470
    • /
    • 2014
  • This article is the result of an investigation on the influence of a Pasternak elastic foundation on the stability of exponentially graded (EG) cylindrical shells under hydrostatic pressure, based on the first-order shear deformation theory (FOSDT) considering the shear stresses. The shear stresses shape function is distributed parabolic manner through the shell thickness. The governing equations of EG orthotropic cylindrical shells resting on the Pasternak elastic foundation on the basis of FOSDT are derived in the framework of Donnell-type shell theory. The novelty of present work is to achieve closed-form solutions for critical hydrostatic pressures of EG orthotropic cylindrical shells resting on Pasternak elastic foundation based on FOSDT. The expressions for critical hydrostatic pressures of EG orthotropic cylindrical shells with and without an elastic foundation based on CST are obtained, in special cases. Finally, the effects of Pasternak foundation, shear stresses, orthotropy and heterogeneity on critical hydrostatic pressures, based on FOSDT are investigated.

Free Vibration Analysis of Thin Plate on Inhomogeneous Pasternak Foundation (비균질 Pasternak 지반 위에 놓인 박판의 자유진동 해석)

  • Lee, Yong-Soo;Oh, Soog-Kyoung;Lee, Hoy-Jin;Kim, Il-Jung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.982-987
    • /
    • 2002
  • Recently, as size of building structure becomes larger, mat area of building structure is supported on Inhomogeneous foundation. The equipment machineries in building are mostly on basement story. The slab of the lowest basement story with equipment machineries is considered as plate supported on foundation with concentrated masses. In this paper, vibration analysis of rectangular thin plate is done by use of rectangular finite element with 4 nodes. The solution of this paper are compared with existing solution and natural frequencies of thin plates, with concented mass, on inhomogeneous Pasternak foundation are calculated

  • PDF

Free Vibration Analysis of Beam-columns Resting on Pasternak Foundation by Differential Quadrature Method (미분구적법에 의한 Pasternak지반 위에 놓인 보-기둥의 자유진동 해석)

  • 이태은;이병구;강희종
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.957-962
    • /
    • 2004
  • This paper deals with the free vibration analysis of beam-columns resting on Pasternak foundation by the Differential Quadrature Method. Based on the differential equation subjected to the boundary conditions, adopted from the open literature, which governs the free vibrations of such member, this equation is applied to the Differential Quadrature Method. For computing natural frequencies, the numerical procedures are developed by QR Algorithm, in which the Chebyshev-Gauss-Lobatto method is used for choosing the grid points. The numerical methods developed herein for computing natural frequencies are programmed in FORTRAN code, and all solutions obtained in this study are quite agreed with those in the open literature.

  • PDF

Analysis of partially embedded beams in two-parameter foundation

  • Akoz, A.Yalcin;Ergun, Hale
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.1-12
    • /
    • 2012
  • In this study, Pasternak foundation model, which is a two parameter foundation model, is used to analyze the behavior of laterally loaded beams embedded in semi-infinite media. Total potential energy variation of the system is written to formulate the problem that yielded the required field equations and the boundary conditions. Shear force discontinuities are exposed within the boundary conditions by variational method and are validated by photo elastic experiments. Exact solution of the deflection of the beam is obtained. Both foundation parameters are obtained by self calibration for this particular problem and loading type in this study. It is shown that, like the first parameter k, the second foundation parameter G also depends not only on the material type but also on the geometry and the loading type of the system. On the other hand, surface deflection of the semi infinite media under singular loading is obtained and another method is proposed to determine the foundation parameters using the solution of this problem.