Acknowledgement
Supported by : National Natural Science Foundation of China
References
- Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49(1), 1-28. https://doi.org/10.1115/1.3101882
- Celep, Z. and Demir, F. (2007), "Symmetrically loaded beam on a two-parameter tensionless foundation", Struct. Eng. Mech., 27(5), 555-574. https://doi.org/10.12989/sem.2007.27.5.555
- Chopra, A.K. (2006), Dynamics of Structures - Theory and Applications to Earthquake Engineering, 3rd edition, Prentice Hall, New Jersey.
- Coskun, I. (2010), "Dynamic contact response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading", Struct. Eng. Mech., 34(3), 319-334. https://doi.org/10.12989/sem.2010.34.3.319
- Cowper, G.R. (1966), "The shear coefficient in Timoshenko's beam theory", J. Appl. Mech., 33, 335-340. https://doi.org/10.1115/1.3625046
- Fan, H.L., Meng, F.H. and Yang, W. (2007), "Sandwich panels with Kagome lattice cores reinforced by carbon fibers", Compos. Struct., 81(4), 533-539. https://doi.org/10.1016/j.compstruct.2006.09.011
- Faulkner, M.G. and Hong, D.P. (1985), "Free vibrations of a mono-coupled periodic system", J. Sound Vib., 99(1), 29-42. https://doi.org/10.1016/0022-460X(85)90443-2
- Hsieh, P.F., Wu, T.T. and Sun, J.H. (2006), "Three-dimensional phononic band gap calculations using the FDTD method and a PC cluster system", IEEE T. Ultrason Ferr., 53(1), 148-158. https://doi.org/10.1109/TUFFC.2006.1588400
- Huang, T.C. (1961), "The effect of rotatory inertia and of shear deformation on the frequency and normal mode equations of uniform beams with simple end conditions", J. Appl. Mech., 28(4), 579-584. https://doi.org/10.1115/1.3641787
- Jia, G.F. and Shi, Z.F. (2010), "A new seismic isolation system and its feasibility study", Earthq. Eng. Eng. Vib., 9(1), 75-82. https://doi.org/10.1007/s11803-010-8159-8
- Kafesaki, M. and Economou, E.N. (1995), "Interpretation of the band structure results for elastic and acoustic waves by analogy with the LCAO approach", Phys. Rev. B, 52(18), 13317-13331. https://doi.org/10.1103/PhysRevB.52.13317
- Khelif, A., Aoubiza, B., Mohammadi, S., Adibi, A. and Laude, V. (2006), "Complete band gaps in twodimensional phononic crystal slabs", Phys. Rev. E, 74(4), 046610-1-5. https://doi.org/10.1103/PhysRevE.74.046610
- Kittel, C. (2005), Introduction to Solid State Physics, 8th edition, John Wiley & Son, New York.
- Kushwaha, M.S. (1996), "Classical band structure of periodic elastic composites", Int. J. Mod. Phys. B, 10(9), 977-1094. https://doi.org/10.1142/S0217979296000398
- Kushwaha, M.S., Halevi, P., Dobrzynski, L. and Djafarirouhani, B. (1993), "Acoustic band structure of periodic elastic composites", Phys. Rev. Lett., 71(13), 2022-2025. https://doi.org/10.1103/PhysRevLett.71.2022
- Lee, S.Y. and Ke, H.Y. (1992), "Flexural wave propagation in an elastic beam with periodic structure", J. Appl. Mech., 59(2), S189-S196. https://doi.org/10.1115/1.2899487
- Lin, Y.K., Zhang, R. and Yong, Y. (1990), "Multiply supported pipeline under seismic wave excitations", J. Eng. Mech.-ASCE, 116(5), 1094-1108. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:5(1094)
- Mead, D.J. (1986), "A new method of analyzing wave propagation in periodic structures - applications to periodic Timoshenko beams and stiffened plates", J. Sound Vib., 104(1), 9-27. https://doi.org/10.1016/S0022-460X(86)80128-6
- Mead, D.J. (1996), "Wave propagation in continuous periodic structures: Research contributions from Southampton, 1964-1995", J. Sound Vib., 190(3), 495-524. https://doi.org/10.1006/jsvi.1996.0076
- Pany, C., Parthan, S. and Mukhopadhyay, M. (2003), "Wave propagation in orthogonally supported periodic curved panels", J. Eng. Mech.-ASCE, 129(3), 342-349. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:3(342)
- Sainidou, R., Stefanou, N., Psarobas, I.E. and Modinos, A. (2005), "A layer-multiple-scattering method for phononic crystals and hetero structures of such", Comput. Phys. Commun., 166(3), 197-240. https://doi.org/10.1016/j.cpc.2004.11.004
- Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve 2-dimensional incompressible Navier-Stokes equations", Int. J. Numer. Meth. Fluids, 15(7), 791-798. https://doi.org/10.1002/fld.1650150704
- Timoshenko, S. (1937), Vibration Problems in Engineering, 2nd edition, D. Van Nestrand, New York.
- Wang, C.M., Lam, K.Y. and He, X.Q. (1998), "Exact solutions for Timoshenko beams on elastic foundations using Green's functions", Mech. Struct. Mach., 26(1), 101-113. https://doi.org/10.1080/08905459808945422
- Wang, G., Wen, J.H., Liu, Y.Z. and Wen, X.S. (2004), "Lumped-mass method for the study of band structure in two-dimensional phononic crystals", Phys. Rev. B, 69(18), 184302-1-6. https://doi.org/10.1103/PhysRevB.69.184302
- Wittrick, W.H. and Williams, F.W. (1971), "General algorithm for computing natural frequencies of elastic structures", Q. J. Mech. Appl. Math., 24(3), 263-284. https://doi.org/10.1093/qjmam/24.3.263
- Xiang, H.J. and Shi, Z.F. (2009), "Analysis of flexural vibration band gaps in periodic beams using differential quadrature method", Comput. Struct., 87(23-24), 1559-1566. https://doi.org/10.1016/j.compstruc.2009.07.009
- Xiang, H.J. and Yang, J. (2008), "Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction", Compos. Pt. B-Eng., 39(2), 292-303. https://doi.org/10.1016/j.compositesb.2007.01.005
- Yao, Z.J., Yu, G.L., Wang, Y.S. and Shi, Z.F. (2009), "Propagation of bending waves in phononic crystal thin plates with a point defect", Int. J. Solids Struct., 46(13), 2571-2576. https://doi.org/10.1016/j.ijsolstr.2009.02.002
- Yu, D.L., Wen, J.H., Zhao, H.G., Liu, Y.Z. and Wen, X.S. (2008), "Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid", J. Sound Vib., 318(1-2), 193-205. https://doi.org/10.1016/j.jsv.2008.04.009
- Zhaohua, F. and Cook, R.D. (1983), "Beam elements on two-parameter elastic foundations", J. Eng. Mech.- ASCE, 109(6), 1390-1402. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:6(1390)
Cited by
- Analysis of flexural wave bandgaps in periodic plate structures using differential quadrature element method vol.100, 2015, https://doi.org/10.1016/j.ijmecsci.2015.06.014
- Feasibility of reducing three-dimensional wave energy by introducing periodic foundations vol.50, 2013, https://doi.org/10.1016/j.soildyn.2013.03.009
- Analysis of in-plane wave propagation in periodic structures with Sierpinski-carpet unit cells vol.395, 2017, https://doi.org/10.1016/j.jsv.2017.02.020
- Study of the bending vibration characteristic of phononic crystals beam-foundation structures by Timoshenko beam theory vol.29, pp.20, 2015, https://doi.org/10.1142/S0217979215501362
- Attenuation zones of periodic pile barriers and its application in vibration reduction for plane waves vol.332, pp.19, 2013, https://doi.org/10.1016/j.jsv.2013.03.028
- Vibration Reduction of Plane Waves Using Periodic In-Filled Pile Barriers vol.141, pp.6, 2015, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001301
- Attenuation zones of initially stressed periodic Mindlin plates on an elastic foundation vol.115-116, 2016, https://doi.org/10.1016/j.ijmecsci.2016.06.010
- Multi-criteria shape design of crane-hook taking account of estimated load condition vol.51, pp.5, 2014, https://doi.org/10.12989/sem.2014.51.5.707
- Multi-mass-spring model and energy transmission of one-dimensional periodic structures vol.61, pp.5, 2014, https://doi.org/10.1109/TUFFC.2014.6805688
- Effect of initial stress on periodic Timoshenko beams resting on an elastic foundation vol.23, pp.18, 2017, https://doi.org/10.1177/1077546315624331
- WFQEM-based perturbation approach and its applications in analyzing nonlinear periodic structures vol.40, pp.8, 2017, https://doi.org/10.1002/mma.4222
- Reverberation-Ray Matrix Analysis and Interpretation of Bending Waves in Bi-Coupled Periodic Multi-Component Beams vol.8, pp.4, 2018, https://doi.org/10.3390/app8040531
- Vibration and energy harvesting performance of a piezoelectric phononic crystal beam vol.28, pp.8, 2011, https://doi.org/10.1088/1361-665x/ab2829
- Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation vol.25, pp.6, 2020, https://doi.org/10.12989/cac.2020.25.6.485
- Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation vol.26, pp.1, 2011, https://doi.org/10.12989/cac.2020.26.1.053
- Investigation of one dimensional multi-layer periodic unit cell for structural base isolation vol.34, pp.None, 2021, https://doi.org/10.1016/j.istruc.2021.08.093