DOI QR코드

DOI QR Code

Vibration attenuation in periodic composite Timoshenko beams on Pasternak foundation

  • Xiang, Hong-Jun (School of Civil Engineering, Beijing Jiaotong University) ;
  • Shi, Zhi-Fei (School of Civil Engineering, Beijing Jiaotong University)
  • Received : 2010.12.08
  • Accepted : 2011.08.17
  • Published : 2011.11.10

Abstract

Periodic and quasi-periodic Timoshenko beams on Pasternak foundation are investigated using the differential quadrature method. Not only band gaps in the beams but also the dynamic response of them is analyzed. Numerical results show that vibration in periodic beams can be dramatically attenuated when the exciting frequency falls into band gaps. Different from the band structures of periodic beams without foundation, the so-called critical frequency was found because of the Pasternak foundation. Its physical meaning was explained in detail and a useful formula was given to calculate the critical frequency. Additionally, a comprehensive parameter study is conducted to highlight the influence of foundation modulus on the band gaps.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Bert, C.W. and Malik, M. (1996), "Differential quadrature method in computational mechanics: a review", Appl. Mech. Rev., 49(1), 1-28. https://doi.org/10.1115/1.3101882
  2. Celep, Z. and Demir, F. (2007), "Symmetrically loaded beam on a two-parameter tensionless foundation", Struct. Eng. Mech., 27(5), 555-574. https://doi.org/10.12989/sem.2007.27.5.555
  3. Chopra, A.K. (2006), Dynamics of Structures - Theory and Applications to Earthquake Engineering, 3rd edition, Prentice Hall, New Jersey.
  4. Coskun, I. (2010), "Dynamic contact response of a finite beam on a tensionless Pasternak foundation under symmetric and asymmetric loading", Struct. Eng. Mech., 34(3), 319-334. https://doi.org/10.12989/sem.2010.34.3.319
  5. Cowper, G.R. (1966), "The shear coefficient in Timoshenko's beam theory", J. Appl. Mech., 33, 335-340. https://doi.org/10.1115/1.3625046
  6. Fan, H.L., Meng, F.H. and Yang, W. (2007), "Sandwich panels with Kagome lattice cores reinforced by carbon fibers", Compos. Struct., 81(4), 533-539. https://doi.org/10.1016/j.compstruct.2006.09.011
  7. Faulkner, M.G. and Hong, D.P. (1985), "Free vibrations of a mono-coupled periodic system", J. Sound Vib., 99(1), 29-42. https://doi.org/10.1016/0022-460X(85)90443-2
  8. Hsieh, P.F., Wu, T.T. and Sun, J.H. (2006), "Three-dimensional phononic band gap calculations using the FDTD method and a PC cluster system", IEEE T. Ultrason Ferr., 53(1), 148-158. https://doi.org/10.1109/TUFFC.2006.1588400
  9. Huang, T.C. (1961), "The effect of rotatory inertia and of shear deformation on the frequency and normal mode equations of uniform beams with simple end conditions", J. Appl. Mech., 28(4), 579-584. https://doi.org/10.1115/1.3641787
  10. Jia, G.F. and Shi, Z.F. (2010), "A new seismic isolation system and its feasibility study", Earthq. Eng. Eng. Vib., 9(1), 75-82. https://doi.org/10.1007/s11803-010-8159-8
  11. Kafesaki, M. and Economou, E.N. (1995), "Interpretation of the band structure results for elastic and acoustic waves by analogy with the LCAO approach", Phys. Rev. B, 52(18), 13317-13331. https://doi.org/10.1103/PhysRevB.52.13317
  12. Khelif, A., Aoubiza, B., Mohammadi, S., Adibi, A. and Laude, V. (2006), "Complete band gaps in twodimensional phononic crystal slabs", Phys. Rev. E, 74(4), 046610-1-5. https://doi.org/10.1103/PhysRevE.74.046610
  13. Kittel, C. (2005), Introduction to Solid State Physics, 8th edition, John Wiley & Son, New York.
  14. Kushwaha, M.S. (1996), "Classical band structure of periodic elastic composites", Int. J. Mod. Phys. B, 10(9), 977-1094. https://doi.org/10.1142/S0217979296000398
  15. Kushwaha, M.S., Halevi, P., Dobrzynski, L. and Djafarirouhani, B. (1993), "Acoustic band structure of periodic elastic composites", Phys. Rev. Lett., 71(13), 2022-2025. https://doi.org/10.1103/PhysRevLett.71.2022
  16. Lee, S.Y. and Ke, H.Y. (1992), "Flexural wave propagation in an elastic beam with periodic structure", J. Appl. Mech., 59(2), S189-S196. https://doi.org/10.1115/1.2899487
  17. Lin, Y.K., Zhang, R. and Yong, Y. (1990), "Multiply supported pipeline under seismic wave excitations", J. Eng. Mech.-ASCE, 116(5), 1094-1108. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:5(1094)
  18. Mead, D.J. (1986), "A new method of analyzing wave propagation in periodic structures - applications to periodic Timoshenko beams and stiffened plates", J. Sound Vib., 104(1), 9-27. https://doi.org/10.1016/S0022-460X(86)80128-6
  19. Mead, D.J. (1996), "Wave propagation in continuous periodic structures: Research contributions from Southampton, 1964-1995", J. Sound Vib., 190(3), 495-524. https://doi.org/10.1006/jsvi.1996.0076
  20. Pany, C., Parthan, S. and Mukhopadhyay, M. (2003), "Wave propagation in orthogonally supported periodic curved panels", J. Eng. Mech.-ASCE, 129(3), 342-349. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:3(342)
  21. Sainidou, R., Stefanou, N., Psarobas, I.E. and Modinos, A. (2005), "A layer-multiple-scattering method for phononic crystals and hetero structures of such", Comput. Phys. Commun., 166(3), 197-240. https://doi.org/10.1016/j.cpc.2004.11.004
  22. Shu, C. and Richards, B.E. (1992), "Application of generalized differential quadrature to solve 2-dimensional incompressible Navier-Stokes equations", Int. J. Numer. Meth. Fluids, 15(7), 791-798. https://doi.org/10.1002/fld.1650150704
  23. Timoshenko, S. (1937), Vibration Problems in Engineering, 2nd edition, D. Van Nestrand, New York.
  24. Wang, C.M., Lam, K.Y. and He, X.Q. (1998), "Exact solutions for Timoshenko beams on elastic foundations using Green's functions", Mech. Struct. Mach., 26(1), 101-113. https://doi.org/10.1080/08905459808945422
  25. Wang, G., Wen, J.H., Liu, Y.Z. and Wen, X.S. (2004), "Lumped-mass method for the study of band structure in two-dimensional phononic crystals", Phys. Rev. B, 69(18), 184302-1-6. https://doi.org/10.1103/PhysRevB.69.184302
  26. Wittrick, W.H. and Williams, F.W. (1971), "General algorithm for computing natural frequencies of elastic structures", Q. J. Mech. Appl. Math., 24(3), 263-284. https://doi.org/10.1093/qjmam/24.3.263
  27. Xiang, H.J. and Shi, Z.F. (2009), "Analysis of flexural vibration band gaps in periodic beams using differential quadrature method", Comput. Struct., 87(23-24), 1559-1566. https://doi.org/10.1016/j.compstruc.2009.07.009
  28. Xiang, H.J. and Yang, J. (2008), "Free and forced vibration of a laminated FGM Timoshenko beam of variable thickness under heat conduction", Compos. Pt. B-Eng., 39(2), 292-303. https://doi.org/10.1016/j.compositesb.2007.01.005
  29. Yao, Z.J., Yu, G.L., Wang, Y.S. and Shi, Z.F. (2009), "Propagation of bending waves in phononic crystal thin plates with a point defect", Int. J. Solids Struct., 46(13), 2571-2576. https://doi.org/10.1016/j.ijsolstr.2009.02.002
  30. Yu, D.L., Wen, J.H., Zhao, H.G., Liu, Y.Z. and Wen, X.S. (2008), "Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid", J. Sound Vib., 318(1-2), 193-205. https://doi.org/10.1016/j.jsv.2008.04.009
  31. Zhaohua, F. and Cook, R.D. (1983), "Beam elements on two-parameter elastic foundations", J. Eng. Mech.- ASCE, 109(6), 1390-1402. https://doi.org/10.1061/(ASCE)0733-9399(1983)109:6(1390)

Cited by

  1. Analysis of flexural wave bandgaps in periodic plate structures using differential quadrature element method vol.100, 2015, https://doi.org/10.1016/j.ijmecsci.2015.06.014
  2. Feasibility of reducing three-dimensional wave energy by introducing periodic foundations vol.50, 2013, https://doi.org/10.1016/j.soildyn.2013.03.009
  3. Analysis of in-plane wave propagation in periodic structures with Sierpinski-carpet unit cells vol.395, 2017, https://doi.org/10.1016/j.jsv.2017.02.020
  4. Study of the bending vibration characteristic of phononic crystals beam-foundation structures by Timoshenko beam theory vol.29, pp.20, 2015, https://doi.org/10.1142/S0217979215501362
  5. Attenuation zones of periodic pile barriers and its application in vibration reduction for plane waves vol.332, pp.19, 2013, https://doi.org/10.1016/j.jsv.2013.03.028
  6. Vibration Reduction of Plane Waves Using Periodic In-Filled Pile Barriers vol.141, pp.6, 2015, https://doi.org/10.1061/(ASCE)GT.1943-5606.0001301
  7. Attenuation zones of initially stressed periodic Mindlin plates on an elastic foundation vol.115-116, 2016, https://doi.org/10.1016/j.ijmecsci.2016.06.010
  8. Multi-criteria shape design of crane-hook taking account of estimated load condition vol.51, pp.5, 2014, https://doi.org/10.12989/sem.2014.51.5.707
  9. Multi-mass-spring model and energy transmission of one-dimensional periodic structures vol.61, pp.5, 2014, https://doi.org/10.1109/TUFFC.2014.6805688
  10. Effect of initial stress on periodic Timoshenko beams resting on an elastic foundation vol.23, pp.18, 2017, https://doi.org/10.1177/1077546315624331
  11. WFQEM-based perturbation approach and its applications in analyzing nonlinear periodic structures vol.40, pp.8, 2017, https://doi.org/10.1002/mma.4222
  12. Reverberation-Ray Matrix Analysis and Interpretation of Bending Waves in Bi-Coupled Periodic Multi-Component Beams vol.8, pp.4, 2018, https://doi.org/10.3390/app8040531
  13. Vibration and energy harvesting performance of a piezoelectric phononic crystal beam vol.28, pp.8, 2011, https://doi.org/10.1088/1361-665x/ab2829
  14. Stability and dynamic analyses of SW-CNT reinforced concrete beam resting on elastic-foundation vol.25, pp.6, 2020, https://doi.org/10.12989/cac.2020.25.6.485
  15. Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation vol.26, pp.1, 2011, https://doi.org/10.12989/cac.2020.26.1.053
  16. Investigation of one dimensional multi-layer periodic unit cell for structural base isolation vol.34, pp.None, 2021, https://doi.org/10.1016/j.istruc.2021.08.093