• Title/Summary/Keyword: passive tubes

Search Result 25, Processing Time 0.023 seconds

Conceptual Design of Passive Containment Cooling System for Concrete Containment

  • Lee, Seong-Wook;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.358-363
    • /
    • 1995
  • A study on passive cooling systems for concrete containment of advanced pressurized water reactors has been performed. The proposed passive containment cooling system (PCCS) consist of (1) condenser units located inside containment, (2) a steam condensing pool outside containment at higher elevation, and (3) downcommer/riser piping systems which provide coolant flow paths. During an accident causing high containment pressure and temperature, the steam/air mixture in containment is condensed on the outer surface of condenser tubes transferring the heat to coolant flowing inside tubes. The coolant transfers the heat to the steam condensing pool via natural circulation due to density difference. This PCCS has the following characteristic: (1) applicable to concrete containment system, (2) no limitation in plant capacity expansion, (3) efficient steam condensing mechanism (dropwise or film condensation at the surface of condenser tube), and (4) utilization of a fully passive mechanism. A preliminary conceptual design work has been done based on steady-state assumptions to determine important design parameter including the elevation of components and required heat transfer area of the condenser tube. Assuming a decay power level of 2%, the required heat transfer area for 1,000MWe plant is assessed to be about 2,000 ㎡ (equivalent to 1,600 of 10 m-long, 4-cm-OD tubes) with the relative elevation difference of 38 m between the condenser and steam condensing pool and the riser diameter of 0.62 m.

  • PDF

Numerical Investigation on Natural Circulation in a Simplified Passive Containment Cooling System (단순화된 피동 원자로건물 냉각계통 내 자연순환에 관한 수치적 연구)

  • Suh, Jungsoo
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.3
    • /
    • pp.92-98
    • /
    • 2018
  • The flow of cooling water in a passive containment cooling system (PCCS), used to remove heat released in design basis accidents from a concrete containment of light water nuclear power plant, was conducted in order to investigate the thermo-fluid equilibrium among many parallel tubes of PCCS. Numerical simulations of the subcooled boiling flow within a coolant loop of a PCCS, which will be installed in innovative pressurized-water reactor (PWR), were conducted using the commercially available computational fluid dynamics (CFD) software ANSYS-CFX. Shear stress transport (SST) and the RPI model were used for turbulence closure and subcooled flow boiling, respectively. As the first step, the simplified geometry of PCCS with 36 tubes was modeled in order to reduce computational resource. Even and uneven thermal loading conditions were applied at the outer walls of parallel tubes for the simulation of the coolant flow in the PCCS at the initial phase of accident. It was observed that the natural circulation maintained in single-phase for all even and uneven thermal loading cases. For uneven thermal loading cases, coolant velocity in each tube were increased according to the applied heat flux. However, the flows were mixed well in the header and natural circulation of the whole cooling loop was not affected by uneven thermal loading significantly.

SO2, NO2 and BTEX Concentrations in Educational and Industrial Areas: Field Measurements in Kuwait

  • Al-Awadhi, Jasem M.
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.4
    • /
    • pp.169-178
    • /
    • 2016
  • Measurements of $SO_2$, $NO_2$ and benzene, toluene, ethylbenzene, and xylenes BTEX concentrations using passive tubes were carried out at five locations featuring educational and light industrial activities in south western Kuwait City during 2014. The five selected sites, chosen to be statistically representative of land use in the study area, were monitored to evaluate the impacts of traffic and light industrial activities on pollutant concentrations. The recorded mean concentrations of $NO_2$, $SO_2$ and BTEX were 40.3, 28.1 and $3.72{\mu}g/m^3$, respectively. The lowest concentrations were recorded in the educational area. Comparisons between the measured concentrations and the applicable air quality standards from the Kuwait Environment Public Authority showed that the gas concentrations were lower than the allowable limits.

An Area Look-Up-Table based Controller for Improving Performance of Luminance on Lighting Passive Matrix Organic Light Emitting Diodes Panels

  • Juan, Chang-Jung;Tsai, Ming-Jong;Liu, Chia-Lin;Mo, Chi-Neng
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1487-1490
    • /
    • 2005
  • This study proposes a controller with the techniqu e of voltage -compensated driver for producing grayscaled pictures on passive matrix organic light emitting diodes (PMOLEDs) panels; especially, the controller overcomes the problem of luminance nonuniformity on displaying pictures. Because the controller is a voltage type driver, the output impedance of the driver is much less than that of the current-type driver. Hence, the controller provides a better electron-optical response than those of traditional current drivers. An area compensated look-up table (ACLUT) is designed in data feeding paths for removing luminance non-uniformity; thus, the proposed controller provides nearly 95% luminance uniformity.

  • PDF

VOID FRACTION PREDICTION FOR SEPARATED FLOWS IN THE NEARLY HORIZONTAL TUBES

  • AHN, TAE-HWAN;YUN, BYONG-JO;JEONG, JAE-JUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.669-677
    • /
    • 2015
  • A mechanistic model for void fraction prediction with improved interfacial friction factor in nearly horizontal tubes has been proposed in connection with the development of a condensation model package for the passive auxiliary feedwater system of the Korean Advanced Power Reactor Plus. The model is based on two-phase momentum balance equations to cover various types of fluids, flow conditions, and inclination angles of the flow channel in a separated flow. The void fraction is calculated without any discontinuity at flow regime transitions by considering continuous changes of the interfacial geometric characteristics and interfacial friction factors across three typical separated flows, namely stratified-smooth, stratified-wavy, and annular flows. An evaluation of the proposed model against available experimental data covering various types of fluids and flow regimes showed a satisfactory agreement.

Corrosion Property Evaluation of Copper Alloy Tubes against Sea Water

  • Pang, Beilli;Ong, Sang-Kil;Lee, Hong-Ro
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.6
    • /
    • pp.280-286
    • /
    • 2009
  • In this study, the corrosion property of copper alloy tubes in seawater has been investigated. Three copper alloys of nominal composition Cu-20Zn-2Al(Al-Brass), Cu-30Ni(CN70/30) and Cu-10Ni(CN90/10) were considered. The samples were immersed in 3%NaCl flowing solution at $90^{\circ}C$ for 30, 50 and 80 days. Corrosion rate of copper alloy tubes in 3%NaCl flowing solution was investigated by weight-loss measurements and electrochemical test. The CN70/30 showed lowest corrosion rate among three copper alloy tubes. Because of passive films formation, corrosion rates of three types of copper tubes were decrease with time. Surface characteristics of copper alloy tubes were analyzed by optical micrograph(OM), scanning electronic microscopy (SEM), energy dispersive X-ray analysis(EDAX) and X-ray diffraction patterns(XRD). CN70/30 showed partly pitting problem on the surface owing to high Fe content, even though having high resistant against corrosion. Cracks appeared on the surface of CN90/10 and CN70/30 after more than 50 days immersion, which could be derived from high nickel contents.

A Conceptual Study of an Air-cooled Heat Exchanger for an Integral Reactor (일체형 원자로의 공랭식 열교환기 개념 연구)

  • Moon, Joo Hyung;Kim, Woo Shik;Kim, Young In;Kim, Myoung Jun;Lee, Hee Joon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.49-54
    • /
    • 2016
  • A conceptual study of an air-cooled heat exchanger is conducted to achieve the long-term passive cooling of an integral reactor. A newly designed air-cooled heat exchanger is introduced in the present study and preliminary thermal sizing is demonstrated. This study mainly focuses on feasibility of an innovative air-cooled heat exchanger to extend the cooling period of the passive residual heat removal system(PRHRS) only in passive manners. A vertical shell-and-tube air-cooled heat exchanger is installed at the top of the emergency cooldown tank(ECT) to collect evaporated steam into condensate, which enables water inventory of the ECT to be kept. Finally, thermal sizing of an air-cooled heat exchanger is presented. The length and the number of tubes required, and also the height of a stack are calculated to remove the designated heat duty. The present study will contribute to an enhancement of the passive safety system of an integral reactor.

MANAGING A PROLONGED STATION BLACKOUT CONDITION IN AHWR BY PASSIVE MEANS

  • Kumar, Mukesh;Nayak, A.K.;Jain, V;Vijayan, P.K.;Vaze, K.K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.605-612
    • /
    • 2013
  • Removal of decay heat from an operating reactor during a prolonged station blackout condition is a big concern for reactor designers, especially after the recent Fukushima accident. In the case of a prolonged station blackout condition, heat removal is possible only by passive means since no pumps or active systems are available. Keeping this in mind, the AHWR has been designed with many passive safety features. One of them is a passive means of removing decay heat with the help of Isolation Condensers (ICs) which are submerged in a big water pool called the Gravity Driven Water Pool (GDWP). The ICs have many tubes in which the steam, generated by the reactor core due to the decay heat, flows and condenses by rejecting the heat into the water pool. After condensation, the condensate falls back into the steam drum of the reactor. The GDWP tank holds a large amount of water, about 8000 $m^3$, which is located at a higher elevation than the steam drum of the reactor in order to promote natural circulation. Due to the recent Fukushima type accidents, it has been a concern to understand and evaluate the capability of the ICs to remove decay heat for a prolonged period without escalating fuel sheath temperature. In view of this, an analysis has been performed for decay heat removal characteristics over several days of an AHWR by ICs. The computer code RELAP5/MOD3.2 was used for this purpose. Results indicate that the ICs can remove the decay heat for more than 10 days without causing any bulk boiling in the GDWP. After that, decay heat can be removed for more than 40 days by boiling off the pool inventory. The pressure inside the containment does not exceed the design pressure even after 10 days by condensation of steam generated from the GDWP on the walls of containment and on the Passive Containment Cooling System (PCCS) tubes. If venting is carried out after this period, the decay heat can be removed for more than 50 days without exceeding the design limits.

Study on the Short Term Exposure Level (STEL) of the Benzene for the Tank Lorry Truck Drivers during Loading Process

  • Park Doo Yong
    • International Journal of Safety
    • /
    • v.3 no.1
    • /
    • pp.27-31
    • /
    • 2004
  • Some of the petroleum products contain benzene which is well known as a confirmed human carcinogen. For example, gasoline products contain benzene ranging up to several percents by weight. High exposures to the benzene and other organic solvents would be likely to occur during intermittent tasks and or processes rather than continuous jobs such as sampling, repair, inspection, and loading/unloading jobs. The work time for these jobs is various. However, most of work time is very short and the representative time interval is 15 minutes. Thus, it is preferable to do exposure assessment for 15 minute time weighted average which is known as a short time exposure level(STEL) by ACGIH rather than for 8-hours TWA. It is particularly significant to the exposure monitoring for benzene since it has been known that the exposure rate plays an important role to provoke the leukemia. Due to the large variations, a number of processes/tasks, the traditional sampling technique for organic solvents with the use of the charcoal and sampling pumps is not appropriate. Limited number of samples can be obtained due to the shortage of sampling pumps. Passive samplers can eliminate these limitations. However, low sampling rates resulted in collection of small amount of the target analysts in the passive samplers. This is originated the nature of passive samplers. Field applications were made with use of passive samplers to compare with the charcoal tube methods for 15 minutes. Gasoline loading processes to the tank lorry trucks at the loading stations in the petroleum products storage area. Good agreements between the results of passive samplers and those of the charcoal tubes were achieved. However, it was found that special cautions were necessary during the analysis at very low concentration levels.

The efficiency of passive confinement in CFT columns

  • Johansson, Mathias
    • Steel and Composite Structures
    • /
    • v.2 no.5
    • /
    • pp.379-396
    • /
    • 2002
  • The paper describes the mechanical behavior of short concrete-filled steel tube (CFT) columns with circular section. The efficiency of the steel tube in confining the concrete core depending on concrete strength and the steel tube thickness was examined. Fifteen columns were tested to failure under concentric axial loading. Furthermore, a mechanical model based on the interaction between the concrete core and the steel tube was developed. The model employs a volumetric strain history for the concrete, characterized by the level of applied confining stress. The situation of passive confinement is accounted for by an incremental procedure, which continuously updates the confining stress. The post-yield behavior of the columns is greatly influenced by the confinement level and is related to the efficiency of the steel tube in confining the concrete core. It is possible to classify the post-yield behavior into three categories: strain softening, perfectly plastic and strain hardening behavior. The softening behavior, which is due to a shear plane failure in the concrete core, was found for some of the CFT columns with high-strength concrete. Nevertheless, with a CFT column, it is possible to use high-strength concrete to obtain higher load resistance and still achieve a good ductile behavior.