• Title/Summary/Keyword: passive state film

Search Result 26, Processing Time 0.025 seconds

Formation Behavior of Passive State Film on Stainless Steel for Metallic Ion Concentration in Electropolishing Solution (전해 연마액 금속 이온 농도에 따른 스테인리스 스틸의 부동태 피막 형성 거동)

  • Oh, Jong Su;Kang, Eun-Young;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.32 no.4
    • /
    • pp.230-236
    • /
    • 2022
  • The formation behavior of a passive state film on the surface of STS304 in electrolytic solution was analyzed to determine its metallic ion composition. The properties of passive state films vary depending on the Fe and Cr ions in the electrolytic solution. It was observed that the passive state film surface became flat and glossy as the concentration of Fe and Cr ions in the electrolytic solution increased. The corrosion resistance property of the passive state film was proportional to the amount of Fe and Cr in the electrolytic solution. An initial passive state film with high Fe concentration was formed on the surface of STS304 during early electrolytic polishing. Osmotic pressure of Fe ions occurs between the passive state film and electrolytic solution due to the Fe ion concentration gradient. The Fe in the passive state film is dissolved into the electrolyte, and Cr fills up the Fe ion vacancies. As a result, a good corrosion-resistant floating film was formed. The more Fe ions in the electrolytic solution, the faster the film is formed, and as a result, a flat passive state film containing a large amount of Cr can be formed.

Anodic Dissolution Property and Structure of Passive Films on Equiatomic TiNi Intermetallic Compound

  • Lee, Jeong-Ja;Yang, Won-Seog;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.311-315
    • /
    • 2007
  • The anodic polarization behavior of equiatomic TiNi shape memory alloy with pure titanium as a reference material was investigated by means of open circuit potential measurement and potentiodynamic polarization technique. And the structure of passive films on TiNi intermetallic compounds was also conducted using AES and ESCA. While the dissolved Ni(II) ion did not affect the dissolution rate and passivation of TiNi alloy, the dissolved Ti(III) ion was oxidated to Ti(IV) ion on passivated TiNi surface at passivation potential. It has also been found that the Ti(IV) ion increases the steady state potential, and passivates TiNi alloy at a limited concentration of Ti(IV) ion. The analysis by AES showed that passive film of TiNi alloy was composed of titanium oxide and nickel oxide, and the content of titanium was three times higher than that of nickel in outer side of passive film. According to the ESCA analysis, the passive film was composed of $TiO_2$ and NiO. It seems reasonable to suppose that NiO could act as unstabilizer to the oxide film and could be dissolved preferentially. Therefore, nickel oxide contained in the passive film may promote the dissolution of the film, and it could be explained the reason of higher pitting susceptibility of TiNi alloy than pure Ti.

Passive Film on Cobalt: A Three-Parameter Ellipsometry Study During the Film Formation

  • Woon-Kie Paik;Seunghyun Koh
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.5
    • /
    • pp.540-544
    • /
    • 1991
  • Thin film being formed on the surface of cobalt in the early stage of electrochemically induced passivation was studied by the three-parameter ellipsometry. The growth of the passive film was complete in a few seconds from the onset of the passivating potential, and was followed by a slight decrease in the thickness in 4-40 seconds. The optical constants of the passive film changed gradually during the changes in the thickness. The thickness and the optical properties at the steady state of passivation depended on the potential of the electrode. From the coulometric data and the optical properties, the composition of the passive films was deduced to be close to those of CoO, ${Co_3}{O_4}$ and ${Co_2}{O_3}$ depending on the potential. Cathodic reduction in the presence of EDTA was found to be an efficient way to obtain film-free reference surface of cobalt.

Improvement of Corrosion Resistance for Copper Tube by Electrochemical Passivation (전기화학적 부동태화에 의한 동관의 내식성 개선 연구)

  • Min, Sung-Ki;Kim, Kyung-Tae;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.125-130
    • /
    • 2011
  • This study was performed to improve the corrosion resistance and the stability of passive film on copper tube by potentiostatic polarization method in synthetic tap water. Formation of passive film was carried out by anodic potentiostatic polarization at various passivation potentials and passivation times in 0.1 M NaOH solution. Stability of passive film and corrosion resistance was evaluated by self-activation time, ${\tau}_0$ from passive state to active state on open-circuit state in 0.1 M NaOH solution. Addition of polyphosphate in NaOH solution prolonged the self-activation time and improved the corrosion resistance, and the addition of 5 ppm polyphosphate was most effective. It was also observed that better corrosion resistance was obtained by potentiostatic polarization at 1.0 V (vs. SCE) than at any other passivation potentials. Passivated copper tube showed perfect corrosion resistance for the immersion test in synthetic tap water showing that the anodic potentiostatic polarization treatment in 0.1 M NaOH with 5 ppm polyphosphate solution would be effective in improving the corrosion resistance and preventing the blue water problem.

Synergistic Effect of Nitrogen and Molybdenum on Localized Corrosion of Stainless Steels

  • Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.20-28
    • /
    • 2010
  • According to the bipolar model, ion selectivity of some species in the passive film is important factor to control the passivation. An increase of cation selectivity of outer layer of the passive film can stabilize the film and improves the corrosion resistance. Therefore, the formation and roles of ionic species in the passive film should be elucidated. In this work, two types of solution (hydrochloric or sulfuric acid) were used to test high N and Mo-bearing stainless steels. The objective of this work was to investigate the formation of oxyanions in the passive film and the roles of oxyanions in passivation of stainless steel. Nitrogen exists as atomic nitrogen, nitric oxide, nitro-oxyanions (${NO_x}^-$), and N-H species, not nitride in the passive film. Because of its high mobility, the enriched atomic nitrogen can act as a reservoir. The formation of N-H species buffers the film pH and facilitates the formation of oxyanions in the film. ${NO_x}^-$ species improve the cation selectivity of the film, increasing the oxide content and film density. ${NO_x}^-$ acts similar to a strong inhibitor both in the passive film and at active sites. This facilitates the formation of chromium oxide. Also, ${NO_x}^-$ can make more molybdate and nitric oxide by reacting with Mo. The role of Mo addition on the passivation characteristics of stainless steel may differ with the test environment. Mo exists as metallic molybdenum, molybdenum oxide, and molybdate and the latter facilitates the oxide formation. When nitrogen and molybdenum coexist in stainless steel, corrosion resistance in chloride solutions is drastically increased. This synergistic effect of N and Mo in a chloride solution is mainly due to the formation of nitro-oxyanions and molybdate ion. Oxyanions can be formed by a 'solid state reaction' in the passive film, resulting in the formation of more molybdate and nitric oxide. These oxyanions improve the cation selectivity of the outer layer and form more oxide and increase the amount of chromium oxide and the ratio of $Cr_2O_3/Cr(OH)_3$ and make the film stable and dense.

Determination of the pH of Iso-Selectivity of the Interfacial Diffusion Layer of Fe

  • Ha, Heon Young;Kwon, Hyuk Sang
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.40-44
    • /
    • 2008
  • Passive metal forms an interfacial diffuse layer on the surface of passive film by its reaction with $H^+$ or $OH^-$ ions in solution depending on solution pH. There is a critical pH, called pH point of iso-selectivity ($pH_{pis}$) at which the nature of the diffuse layer is changed from the anion-permeable at pH<$pH_{pis}$ to the cation-permeable at pH>$pH_{pis}$. The $pH_{pis}$ for a passivated Fe was determined by examining the effects of pH on the thickness of passive film and on the dissolution reaction occurring on the passive film under a gavanostatic reduction in borate-phosphate buffer solutions at various pH of 7~11. The steady-state thickness of passive film formed on Fe showed the maximum at pH 8.5~9, and further the nature of film dissolution reaction was changed from a reaction producing $Fe^{3+}$ ion at $pH\leq8.5$ to that producing $FeO_2{^-}$ at $pH\geq9$, suggesting that the $pH_{pis}$ of Fe is about pH 8.5~9. In addition, the passive film formed at pH 8.5~9, $pH_{pis}$, was found to be the most protective with the lowest defect density as confirmed by the Mott-Schottky analysis. Pitting potential was decreased with increasing $Cl^-$ concentration at $pH\leq8.5$ due probably to the formation of anion permeable diffuse layer, but it was almost constant at $pH\geq9$ irrespective of $Cl^-$ concentration due primarily to the formation of cation permeable diffuse layer on the film, confirming again that $pH_{pis}$ of Fe is 8.5~9.

Semiconductor Behavior of Passive Films Formed on Cr with Various Additive Elements

  • Tsuchiya, Hiroaki;Fujimoto, Shinji;Shibata, Toshio
    • Corrosion Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.7-11
    • /
    • 2003
  • Photoelectrochemical response and electrochemical impedance behavior was investigated for passive film formed on sputter-deposited Cr alloy in $0.1kmol{\cdot}m^{-3}$. Photoelectrochemical action spectrum could be separated into two components, which were considered to be derived from $Cr_2O_3$ ($E_g\sim3.6eV$) and $ Cr(OH)_3 $ ($E_g\sim2.5eV$). The band gap energy, $E_g$, of each component was almost constant for various applied potentials. polarization periods and alloying additives. The photoelectrochemical response showed negative photo current for most potentials in the passive region. Therefore, the photo current apparently exhibited p-typesemiconductor behavior. On the other hand, Mort-Schottky plot of the capacitance showed positive slope, which means that passive film formed on Cr alloy has n-type semiconductor property. These apparently conflicting results are rationally explained assuming that the passive film on Cr alloy formed in the acid solution has n-type semiconductor property with a fairly deep donor level in the band gap and forms an accumulation layer in the most of potential region in the passive state.

Evaluation of Corrosion Resistance Properties by Applying Galvanostatic Nanoscale Current Density on Passive Metals

  • Na, Seung-Chan;Lee, Jeong-Ja;Yang, Won-Seog;Hwang, Woon-Suk
    • Corrosion Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.7-11
    • /
    • 2007
  • In this study, new evaluation method for the stability and corrosion resistance properties of passive films has been suggested by means of observation of self-activation process in open-circuit state and galvanostatic nanoscale reduction test. The experiments were performed for air-formed oxide film in case of plain carbon steel, and for anodically passivated films formed in aqueous sulfuric acid solutions in case of titanium and 304 stainless steel. From these experimental results, we derived two parameters, $i_{0}$ and $q_{0}$, which characterize the self-activation process and the properties of passive film on a stainless steel surface. The parameter $i_{0}$ was defined as the rate of self-activation, and $q_{0}$, the reduced amount of charge during the self-activation process. In conclusion, it is considered that the stability and corrosion resistance of passive metals and alloys can be evaluated quantitatively by three parameters of $\tau_{0}$, $q_{0}$, and $i_{0}$, which easily obtain by means of observing the self-activation process and galvanostatic nanoscale reduction test.

Low Temperature Interface Modification: Electrochemical Dissolution Mechanism of Typical Iron and Nickel Base Alloys

  • Jiangwei Lu;Zhengyang Xu;Tianyu Geng
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.220-241
    • /
    • 2024
  • Due to its unique advantages, electrochemical machining (ECM) is playing an increasingly significant role in the manufacture of difficult-to-machine materials. Most of the current ECM research is conducted at room temperature, with studies on ECM in a cryogenic environment not having been reported to date. This study is focused on the electrochemical dissolution characteristics of typical iron and nickel base alloys in NaNO3 solution at low temperature (-10℃). The polarization behaviors and passive film properties were studied by various electrochemical test methods. The results indicated that a higher voltage is required for decomposition and more pronounced pitting of their structures occurs in the passive zone in a cryogenic environment. A more in-depth study of the composition and structure of the passive films by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy showed that the passive films of the alloys are modified at low temperature, and their capacitance characteristics are more prominent, which makes corrosion of the alloys more likely to occur uniformly. These modified passive films have a huge impact on the surface morphologies of the alloys, with non-uniform corrosion suppressed and an improvement in their surface finish, indicating that lowering the temperature improves the localization of ECM. Together with the cryogenic impact of electron energy state compression, the accuracy of ECM can be further improved.

Water film covering characteristic on horizontal fuel rod under impinging cooling condition

  • Penghui Zhang;Bowei Wang;Ronghua Chen;G.H. Su;Wenxi Tian;Suizheng Qiu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4329-4337
    • /
    • 2022
  • Jet impinging device is designed for decay heat removal on horizontal fuel rods in a low temperature heating reactor. An experimental system with a fuel rod simulator is established and experiments are performed to evaluate water film covering capacity, within 0.0287-0.0444 kg/ms mass flow rate, 0-164.1 kW/m2 heating flux and 13.8-91.4℃ feeding water temperature. An effective method to obtain the film coverage rate by infrared equipment is proposed. Water film flowing patterns are recoded and the film coverage rates at different circumference angles are measured. It is found the film coverage rate decreases with heating flux during single-phase convection, while increases after onset of nucleate boiling. Besides, film coverage rate is found affected by Marangoni effect and film accelerating effect, and surface wetting is significantly facilitated by bubble behavior. Based on the observed phenomenon and physical mechanism, dry-out depth and initial dry-out rate are proposed to evaluate film covering potential on a heating surface. A model to predict film coverage rate is proposed based on the data. The findings would have reliable guide and important implications for further evaluation and design of decay heat removal system of new reactors, and could be helpful for passive containment cooling research.