Browse > Article
http://dx.doi.org/10.3740/MRSK.2022.32.4.230

Formation Behavior of Passive State Film on Stainless Steel for Metallic Ion Concentration in Electropolishing Solution  

Oh, Jong Su (NANUL Co. Ltd)
Kang, Eun-Young (Department of Materials Science and Engineering, Inha University)
Jeong, Dae-Yong (Department of Materials Science and Engineering, Inha University)
Publication Information
Korean Journal of Materials Research / v.32, no.4, 2022 , pp. 230-236 More about this Journal
Abstract
The formation behavior of a passive state film on the surface of STS304 in electrolytic solution was analyzed to determine its metallic ion composition. The properties of passive state films vary depending on the Fe and Cr ions in the electrolytic solution. It was observed that the passive state film surface became flat and glossy as the concentration of Fe and Cr ions in the electrolytic solution increased. The corrosion resistance property of the passive state film was proportional to the amount of Fe and Cr in the electrolytic solution. An initial passive state film with high Fe concentration was formed on the surface of STS304 during early electrolytic polishing. Osmotic pressure of Fe ions occurs between the passive state film and electrolytic solution due to the Fe ion concentration gradient. The Fe in the passive state film is dissolved into the electrolyte, and Cr fills up the Fe ion vacancies. As a result, a good corrosion-resistant floating film was formed. The more Fe ions in the electrolytic solution, the faster the film is formed, and as a result, a flat passive state film containing a large amount of Cr can be formed.
Keywords
electrolytic polishing; passive state film; electrolytic solution composition;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. Lee, J. Park, T. Song, K. Ryoo and Y. B. Lee, J. Korea Acad. Industr. Coop. Soc., 4, 47 (2003).
2 N. V. Hue and S. C. Kwon, J. Korean Inst. Surf. Eng., 36, 277 (2003).
3 S. H. Kim, S. H. Lee, J. Cho, S. B. Kim, J. Choi and C. Park, J. Korean Inst. Surf. Eng., 49, 363 (2016).   DOI
4 C. Wagner, J. Electrochem. Soc., 101, 225 (1954).   DOI
5 J. Chantana, D. Hironiwa, T. Watanabe, S. Teraji and T. Minemoto, Prog. Photovolt: Res. Appl., 24, 990 (2016).   DOI
6 R. Suzuki, Y. Yokoyama, T. Shibano, T. Sugiura and N. Katori, SAE Int. J. Mater. Manuf., 9, 474 (2016).   DOI
7 J. H. Park, Y. Jun, H.-G. Yun, S.-Y. Lee and M. G. Kang, J. Electrochem. Soc., 155, F145 (2008).   DOI
8 M. Toivola, F. Ahlskog and P. Lund, Sol. Energy Mater. Sol. Cells, 90, 2881 (2006).   DOI
9 J. B. Song, H. D. Jeong, E. S. Lee and J. W. Park, J. Korean Soc. Precis. Eng., 5, 133 (1998).
10 J. Richardsa, C. Cremersb, P. Fischerb and K. Schmidt, Energy Procedia, 20, 324 (2012).   DOI
11 H. P. Kim and D. J. Kim, Corros. Sci. Technol., 17, 183 (2018).
12 D. Wang, Z. Zhu, N. Wang, D. Zhu and H. Wang, Electrochim. Acta, 156, 301 (2015).   DOI
13 F. Nazneen, P. Galvin, D. W. M. Arrigan, M. Thompson, P. Benvenuto and G. Herzog, J. Solid State Electrochem., 16, 1389 (2012).   DOI
14 D. Landolt, Electrochim. Acta, 32, 1 (1987).   DOI
15 S. Magaino, M. Matlosz and D. Landolt, J. Electrochem. Soc., 140, 1365 (1993).   DOI
16 S.-H. Kim, S.-G. Choi, W.-K. Choi and E.-S. Lee, Int. J. Adv. Manuf. Technol., 85, 2313 (2016).   DOI
17 S. Teraji, J. Chantana, T. Watanabe and T. Minemoto, J. Alloys Compd., 756, 111 (2018).   DOI