• Title/Summary/Keyword: passenger vehicle

Search Result 845, Processing Time 0.033 seconds

Analysis and Small Scale Model Expriment on the Vertical Vibration of the KT-23 Type Passenger Vehicle (KT-23형 여객 차량의 상하 진동 해석 및 축소모형 실험)

  • 최경진;이동형;장동욱;권영필
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.4
    • /
    • pp.266-273
    • /
    • 2003
  • The purpose of this study is to obtain the effects of the parameters of the suspension system in railway rolling-stock for KT-23 type Passenger vehicle. According to the analysis and the small scale model car test. optimal condition was obtained for the stiffness ratio of secondary spring to primary spring of the suspension system and the mass ratio of the bogie frame to the car body. The analysis of the study shows that if the car body mass is increased or secondary stiffness Is lowered, the vertical vibration level is reduced and the passenger comfort can be improved. Especially, strong peaks are occurred in the frequencies corresponding to the rotational speed of driving axle and vehicle wheel. Hence, in order to obtain the dynamic characteristics through the small scale model car, the driving method of the vehicle on the test bench, rotational characteristics of the wheel and the natural modes of vehicle should be investigated and be modified.

A Case Study on the Investigation of Vehicle Fire According to Drive Train (구동방식에 따른 승용차 엔진룸 화재조사 기법에 관한 사례 연구)

  • Son, J.B.;Kwon, H.H.;Lee, J.I.;Choi, D.M.
    • Journal of Korean Institute of Fire Investigation
    • /
    • v.11 no.1
    • /
    • pp.83-88
    • /
    • 2008
  • The fire outbreaking origin of vehicle fire would be classified into two positions such as engine room and passenger room of vehicle. As a firewall is installed between engine room and passenger room, in case of engine fire, it could be assumed that it takes about 10 to 15 minutes for the fire to spread into passenger room There are two different vehicle engine layouts such as transversal and lateral layout, and the fire spreading process and resulting damage patterns on left and right side dash-panel are different depending on the engine layouts. In accordance, the first thing to do for correct and speedy finding of the fire origin place is considered to be an investigation into the dash-panel damage in case of engine room fire investigation.

  • PDF

Optimal Design of Magnetorheological Shock Absorbers for Passenger Vehicle via Finite Element Method (자기유변유체를 이용한 승용차량 쇽 업소버의 유한요소 최적설계)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.2
    • /
    • pp.169-176
    • /
    • 2008
  • This paper presents optimal design of controllable magnetorheological(MR) shock absorbers for passenger vehicle. In order to achieve this goal, two MR shock absorbers (one for front suspension; one for rear suspension) are designed using an optimization methodology based on design specifications for a commercial passenger vehicle. The optimization problem is to find optimal geometric dimensions of the magnetic circuits for the front and rear MR shock absorbers in order to improve the performance such as damping force as an objective function. The first order optimization method using commercial finite element method(FEM) software is adopted for the constrained optimization algorithm. After manufacturing the MR shock absorbers with optimally obtained design parameters, their field-dependent damping forces are experimentally evaluated and compared with those of conventional shock absorbers. In addition, vibration control performances of the full-vehicle installed with the proposed MR shock absorbers are evaluated under bump road condition and obstacle avoidance test.

Quantitative Visualization of Ventilation Flow for Defrost Mode in a Real Passenger Car (제상모드에 대한 실차 내부 환기유동의 정량적 가시화 연구)

  • Lee, Jin-Pyung;Lee, Sang-Joon
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.2
    • /
    • pp.40-44
    • /
    • 2010
  • Thermal comfort inside a passenger car has been receiving large attention in automobile industries. Especially, the performance of windshield defroster is important in the design of a car to ensure passenger comport and safety. Thereby, better understanding on the ventilation flow along the vehicle windshield is essential to evaluate the performance of windshield defroster. However, most previous studies dealt with the defrost flow using CFD (computational fluid dynamics) calculations or scale-down model experiments. In this study, a real commercial automobile was used to investigate the flow discharged from the vehicle defroster and the ventilation flow along the windshield using a PIV velocity field measurement technique. The experimental data would be useful to understand the flow characteristics in detail and also can be used to validate numerical predictions.

Optimization of Passenger Transportation Problem (승객 수송 문제의 최적화)

  • Park, Jun-Hyuk;Kim, Byung-In;Kim, Seong-Bae;Sahoo, Surya
    • IE interfaces
    • /
    • v.23 no.2
    • /
    • pp.139-146
    • /
    • 2010
  • In this paper, we present the study of a real passenger transportation system. Passenger transportation problem aims to transport passengers from bus stops to their destinations by a fleet of vehicles while satisfying various constraints such as vehicle capacity, maximum allowable riding time in a bus, and time windows at destinations. Our problem also has special issues such as mixed loading, consideration of afternoon problem together with morning problem, and transferring passengers between vehicles. Our solution approach consists of three serial procedures: bus route generation, bus scheduling, and post optimization. Efficient heuristic algorithms were developed and implemented for the procedures. The proposed solution approach has been successfully applied to several real world problem instances and could reduce about 10% to 15% of buses.

An Experimental Study on The Coupling Path and Acoustic Modal Characteristics of Passenger Compartment - Trunk Coupled System (차실-트렁크 연성계의 연성경로 및 음향모드 특성에 관한 실험적 연구)

  • Kim, Gyoo-Beom;Lee, Jin-Woo;Lee, Jang-Moo;Kim, Seock-Hyun;Park, Dong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.607-611
    • /
    • 2000
  • Acoustic modal property of the vehicle passenger compartment is a very important factor which dominates vehicle interior noise in the low frequency range. In most real cars, trunk noise often transfers into the passenger compartment since the two cavities are acoustically coupled. This study identifies the major coupling path by examining the variation of the coupled acoustic modal frequencies and modes. An 1/2 size acryl compartment model is designed and manufactured for the measurement and analysis of coupled acoustic modes. Experimental result shows that package tray contributes to the coupling much more than the back seat and hole size of the package tray is an important design factor to control low frequency acoustic modes in the coupled system.

  • PDF

ESTIMATION OF VEHICLE STATE AND ROAD BANK ANGLE FOR DRIVER ASSISTANCE SYSTEMS

  • Chung, T.;Yi, S.;Yi, K.
    • International Journal of Automotive Technology
    • /
    • v.8 no.1
    • /
    • pp.111-117
    • /
    • 2007
  • The nonlinear characteristics of a suspension is directly related to the ride quality of a passenger car. In this study, the nonlinear characteristics of a spring and a damper of a passenger car is analyzed by dynamic experiments using the MTS single-axial testing machine. Also, a mathematical nonlinear dynamic model for the suspension is devised to estimate the ride quality using the K factor. And the effect on the variation of the parameters of the suspension is examined. The results showed that the dynamic viscosity of the oil in a damper was the parameter that most influeced the ride quality of a passenger car for the ride quality of a passenger car.

Analysis of Ride Comfort Test Result for Passenger Coach (객차 승차감 측정 시험결과 분석)

  • Lee, Ji-Hoon;Lee, Chang-Hwan;Yoo, Wan-Suk
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.43-49
    • /
    • 2006
  • To design railway vehicles to ensure comfortable running, ride comfort of human exposed on vibrating carbody should be considered. Also, to improve ride comfort for passenger coach, many factors should be analysed and evaluated. There are many factors as suspension characteristics of railway vehicle, track characteristics to run etc. In this paper, passenger coach sujected to test on specific routine were evaluated using test results. Test routine were divided by 13 sections to analyse more detail. And the characteristics of every section were analysed distributions of radius curves, tunnel and bridge which could give impact to ride comfort. The evaluation of ride comfort were accomplished by UIC and ISO methods.

  • PDF

An Analysis of Passenger Discomfort According to Vertical Vibration and Pitching (수직 진동과 pitching에 의한 탑승자의 승차감 변화에 대한 해석)

  • Ryu, K.C.;Kim, Y.E.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.5
    • /
    • pp.100-110
    • /
    • 1995
  • The human subject perception response according to vertical vibration and pitching was analyzed with a five degree of freedom model. The vehicle dynamic system with the delayed colored noise excitation and the passenger perception response was arranged as an integrated viration system and could be analyzed simultaneously for seven different combination of vehicle suspension. ISO2631 and BS6841 was adapted for analyzing the passenger perception reponse. Simulation results shows that passenger feel relatively less discomfort due to pitching compared to vertical vibration and road type was not necessary to be considered as a design parameter in view of comfort analysis.

  • PDF

A Study on Protection of Rear Submarine of 5th percentile Female Dummy (5th%ile 여성 인체모형 뒷좌석 서브마린 방지에 대한 연구)

  • Kim, Hong Gyu;Yum, Sun Ill;Jin, Wook
    • Journal of Auto-vehicle Safety Association
    • /
    • v.9 no.3
    • /
    • pp.13-18
    • /
    • 2017
  • Since 2015, Euro-NCAP and C-NCAP have enhanced regulation on submarine of rear female passenger. This submarine regulation is a big obstacle to achieve the highest level crash performance. So the objective of this study is to develop new technical way to protect rear female passenger against submarine. In this study, we figured out how design factors of seatbelt affect submarine of rear female passenger by sled test. And we verified that rear passenger submarine can be improved by increasing intersection angle of seatbelt anchor and rotation amount of seatbelt buckle. Based on these results, this paper proposes a new invention of seatbelt buckle and anchor that can improve rear passenger submarine. One is seatbelt buckle that can be detached from stopper to prevent rotation and the other is seatbelt anchor that can be changed the structure so as to incline forward during crash. Finally we proved that submarine of rear female passenger can be improved by the effectiveness of new inventions.