• Title/Summary/Keyword: partition coefficient

Search Result 287, Processing Time 0.026 seconds

Characteristics of Sulfonated Poly(arylene ether sulfones) Cation-Exchange Membrane by Variation of Sulforic Acid Group Concentration (술폰화 poly(arylene ether sulfones) 양이온 교환막의 술폰산기 농도 변화에 따른 특성)

  • Kim Lae Hyun;Lee Seung Yong;Choi Sun Yong;Lee Joung Woo;Park Sei Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.1
    • /
    • pp.57-62
    • /
    • 2000
  • Sulfonated Polysulfone (SPSF) cation-exchange membranes were synthesized by introducing various ratio of chlorosulfuric acid (CSA) onto the main chain of polysulfone (PSF). Properties such as ion exchange capacity, water content, liked ion concentration, and partition coefficient were measured, respectively. Through the analysis of DSC and TGA, it has been shown that glass transition temperature increased and weight loss decreased as sulfuric acid group concentration increased. Structure of membrane measured by AFM and SEM was seen to be asymmetric. Apparent diffusion coefficient of sodium ions through SPSF membrane by AC impedance was increased as sulfuric acid group concentration increased.

Numerical Simulation for the Prediction of PAHs in Jinhae Bay using EMT-3D Model (EMT-3D 모델을 이용한 진해만 PAHs의 거동 예측 시뮬레이션)

  • Kim, Dong-Myung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2011
  • The behavior prediction of PAHs in Jinhae Bay using a three-dimensional ecological model(EMT-3D) was examined. A three-dimensional ecological model(EMT-3D) was applied to the simulation of PAHs behaviors in Jinhae Bay of Korea. The computed results of simulation were in good agreement with the observed values. The result of sensitivity analysis showed that photolysis coefficient and extinction coefficient were important factors in the variation of dissolved PAHs, and POC partition coefficient was important factor in the variation of PAHs in particulate organic matter. In the case of PAHs in phytoplankton, bioconcentration factor of plankton was the most significant and the most effective in all. In simulations of 30%, 50% and 80% reduction in total loads of PAHs, the concentrations of dissolved PAHs were shown to be lower than 24 ng/L, 20 ng/L and 16 ng/L, respectively.

Analysis of Runoff Sensitivity for Initial Soil Condition in Distributed Model (초기토양조건에 대한 분포형모형 유출민감도 분석)

  • Park, Jin Hyeog;Hur, Young Teck
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.375-381
    • /
    • 2008
  • In this research, a physics based grid-multi layer distributed flood runoff model was developed to analyze discharge for the Namgang Dam Watershed ($2,293km^2$) and applied for sensitivity analysis for estimation of parameters, mainly initial soil moisture condition and saturate infiltration coefficient, which have a strong influence on discharge. Capability of the model was evaluated using VER and QER from the results of rainfall-runoff analysis and showed enhanced results of 6% compared to parameters before calibration. As the result with the sensitivity analysis of parameters, the part of the most influence on the runoff was the infiltration coefficient and ratio of layer partition. The total discharge and peak time showed comparatively precise runoff results without the initial calibration of the parameters.

Electrochemical Analysis and Applications of Tetracycline Transfer Reaction Process at Liquid/liquid Interfaces (액체/액체 계면에서 테트라사이클린 전이반응의 전기화학적 분석 및 응용)

  • Liu, XiaoYun;Han, Hye Youn;Goh, Eunseo;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.506-512
    • /
    • 2017
  • The transfer reaction characteristics of tetracycline (TC) across a polarized water/1,2-dichloroethane (1,2-DCE) interface was studied via controlling both pH and ionic strength of the aqueous phase in conjunction with cyclic and differential pulse voltammetries. Formal transfer potential values of differently charged TC ionic species at the water/1,2-DCE interface were measured as a function of pH values of the aqueous solution, which led to establishing an ionic partition diagram for TC. As a result, we could identify which TC ionic species are more dominant in the aqueous or organic phase. Thermodynamic properties including the formal transfer potential, partition coefficient and Gibbs transfer energy of TC ionic species at the water/1,2-DCE interface were also estimated. In order to construct an electrochemical sensor for TC, a single microhole supported water/polyvinylchloride-2-nitrophenyloctylether (PVC-NPOE) gel interface was fabricated. A well-defined voltammetric response associated with the TC ion transfer process was achieved at pH 4.0 similar to that of using the water/1,2-DCE interface. Also the measured current increased proportionally with respect to the TC concentration. A $5{\mu}M$ of TC in pH 4.0 buffer solution with a dynamic range from $5{\mu}M$ to $30{\mu}M$ TC concentration could be analyzed when using differential pulse stripping voltammetry.

Comparison of Algorithms for Generating Parametric Image of Cerebral Blood Flow Using ${H_2}^{15}O$ PET Positron Emission Tomography (${H_2}^{15}O$ PET을 이용한 뇌혈류 파라메트릭 영상 구성을 위한 알고리즘 비교)

  • Lee, Jae-Sung;Lee, Dong-Soo;Park, Kwang-Suk;Chung, June-Key;Lee, Myung-Chul
    • The Korean Journal of Nuclear Medicine
    • /
    • v.37 no.5
    • /
    • pp.288-300
    • /
    • 2003
  • Purpose: To obtain regional blood flow and tissue-blood partition coefficient with time-activity curves from ${H_2}^{15}O$ PET, fitting of some parameters in the Kety model is conventionally accomplished by nonlinear least squares (NLS) analysis. However, NLS requires considerable compuation time then is impractical for pixel-by-pixel analysis to generate parametric images of these parameters. In this study, we investigated several fast parameter estimation methods for the parametric image generation and compared their statistical reliability and computational efficiency. Materials and Methods: These methods included linear least squres (LLS), linear weighted least squares (LWLS), linear generalized least squares (GLS), linear generalized weighted least squares (GWLS), weighted Integration (WI), and model-based clustering method (CAKS). ${H_2}^{15}O$ dynamic brain PET with Poisson noise component was simulated using numerical Zubal brain phantom. Error and bias in the estimation of rCBF and partition coefficient, and computation time in various noise environments was estimated and compared. In audition, parametric images from ${H_2}^{15}O$ dynamic brain PET data peformed on 16 healthy volunteers under various physiological conditions was compared to examine the utility of these methods for real human data. Results: These fast algorithms produced parametric images with similar image qualify and statistical reliability. When CAKS and LLS methods were used combinedly, computation time was significantly reduced and less than 30 seconds for $128{\times}128{\times}46$ images on Pentium III processor. Conclusion: Parametric images of rCBF and partition coefficient with good statistical properties can be generated with short computation time which is acceptable in clinical situation.

Study on Physicochemical Properties of Pesticide. (I) Water Solubility, Hydrolysis, Vapor Pressure, and n-Octanol/water Partition Coefficient of Captafol (농약의 물리화학적 특성연구 (I) Captafol의 수용성, 가수분해, 증기압, 옥탄올/물 분배계수)

  • Kim, Jeong-Han;Lee, Sung-Kyu;Kim, Yong-Hwa;Kim, Kyun
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.71-75
    • /
    • 1997
  • Important physicochemical properties of captafol [N-(1,1,2,2-tetrachloro-ethylthio)cyclohex-4-ene-1,2-dicarboximide], water solubility, vapor pressure, hydrolysis and octanol/water partition coefficient(Kow) were measured based on the standard EPA and OECD methods. Water solubility of the chemical was 2.24 ppm at $25^{\circ}C$. Half-life by hydrolysis at $25^{\circ}C$ in the buffer solution of pH 3.0, pH 7.0, and pH 8.0 was 77.8 hr, 6.54 hr and 0.72 hr, respectively, demonstrating instability in alkaline solution. The half-life in acid condition was not significantly different by temperature change, however, that in neutral or alkaline solution became shorter at $40^{\circ}C$. Hydrolysis study with a reference compound, diazinon, proved that the experimental method of the present study is reliable. Vapor pressure of captafol, $8.27{\times}10^{-9}$ torr at $20^{\circ}C$, was calculated from the equation, log P=6.94-(4401.6/T) plotted on the experiment results under different temperature conditions, 40, 50, and $60^{\circ}C$. pressure of captafol, the contamination of captafol would not happen easily in environment by vaporization. High Kow value of 1,523 was observed and this might result in bioconcentration through food chain when captafol was exposed. However, affecting human health through aquatic bioaccumulation is not likely to occur due to its rapid hydrolysis in the environment.

  • PDF

Study on Physicochemical Properties of Pesticides. (II) Water Solubility, Hydrolysis, Vapor Pressure, and Octanol/water Partition Coefficient of Flupyrazofos (농약의 물리화학적 특성 연구 (II) Flupyrazofos의 수용성, 가수분해, 증기압, 옥탄올/물 분배계수)

  • Kim, Jeong-Han;Kim, Yong-Hwa;Kim, Kyun
    • Applied Biological Chemistry
    • /
    • v.40 no.1
    • /
    • pp.76-79
    • /
    • 1997
  • Several physicochemical properties such as water solubility, vapor pressure, hydrolysis and octanol/water partition coefficient(Kow) of flupyrazofos, the first organophosphorus insecticide developed in Korea, were measured based on EPA and OECD methods. Water solubility was low showing 0.80 ppm at $25^{\circ}C$ and in hydrolysis study, half-life at $25^{\circ}C$ was 266.5 hr(pH 4.0), 180.0 hr(pH 7.0) and 120.9 hr(pH 9.0) demonstrating instability in alkaline solution. At $40^{\circ}C$ hydrolysis rate was $2{\sim}4$ times higher than that at $25^{\circ}C$. The equation log P=0.673-(1565.4/T) was obtained from vapor pressure experiments at three different temperatures (25, 35, $45^{\circ}C$) and $2.81{\times}10^{-5}$ torr was obtained at $25^{\circ}C$. This value is similar to that of diazinon and 1,000 times lower than that of DDVP suggesting it would not give environmental contamination by volatilization. High log Kow(5.24) was observed and this might result in bioconcentration through food chain. However, its possibility is not likely to be high due to its relatively rapid hydrolysis.

  • PDF

Ecological Risk Assessment of Lead and Arsenic by Environmental Media (납과 비소에 대한 환경매체별 생태위해성평가)

  • Lee, Byeongwoo;Lee, Byoungcheun;Kim, Pilje;Yoon, Hyojung
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • Objectives: This study intends to evaluate the ecological risk of lead (Pb), arsenic (As), and their compounds according to the 2010 action plan on inventory and management for national priority chemicals and provide calculations of risks to the environment. By doing so, we aim to inform risk management measures for the target chemicals. Methods: We conducted species sensitivity distribution (SSD) analysis using the collected ecotoxicity data and obtained predicted no effect concentrations (PNECs) for the in-water environment using a hazardous concentration of 5% (HC5) protective of most species (95%) in the environment. Based on the calculated PNECs for aquatic organisms, PNEC values for soil and sediment were calculated using the partition coefficient. We also calculated predicted exposure concentration (PEC) from nation-wide environmental monitoring data and then the hazard quotient (HQ) was calculated using PNEC for environmental media. Results: Ecological toxicity data was categorized into five groups and five species for Pb and four groups and four species for As. Based on the HC5 values from SSD analysis, the PNEC value for aquatic organisms was calculated as 0.40 ㎍/L for Pb and 0.13 ㎍/L for As. PNEC values for soil and sediment calculated using a partition coefficient were 77.36 and 350.50 mg/kg for Pb and 24.20 and 112.75 mg/kg for As. The analysis of national environmental monitoring data showed that PEC values in water were 0.284 ㎍/L for Pb and 0.024 ㎍/L for As, while those in soil and sediment were respectively 45.9 and 44 mg/kg for Pb, and 11.40 and 19.80 mg/kg for As. Conclusions: HQs of Pb and As were 0.70 and 0.18 in water, while those in soil and sediment were 0.59 and 0.13 for Pb and 0.47 and 0.18 for As. With HQs <1 of lead and arsenic in the environment, their ecological risk levels are found to be low.

A Linear-Time Heuristic Algorithm for k-Way Network Partitioning (선형의 시간 복잡도를 가지는 휴리스틱 k-방향 네트워크 분할 알고리즘)

  • Choi, Tae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.8
    • /
    • pp.1183-1194
    • /
    • 2004
  • Network partitioning problem is to partition a network into multiple blocks such that the size of cutset is minimized while keeping the block sizes balanced. Among these, iterative algorithms are regarded as simple and efficient which are based on cell move of Fiduccia and Mattheyses algorithm, Sanchis algorithm, or Kernighan and Lin algorithm. All these algorithms stipulate balanced block size as a constraint that should be satisfied, which makes a cell movement be inefficient. Park and Park introduced a balancing coefficient R by which the block size balance is considered as a part of partitioning cost, not as a constraint. However, Park and Park's algorithm has a square time complexity with respect to the number of cells. In this paper, we proposed Bucket algorithm that has a linear time complexity with respect to the number of cells, while taking advantage of the balancing coefficient. Reducing time complexity is made possible by a simple observation that balancing cost does not vary so much when a cell moves. Bucket data structure is used to maintain partitioning cost efficiently. Experimental results for MCNC test sets show that cutset size of proposed algorithm is 63.33% 92.38% of that of Sanchis algorithm while our algorithm satisfies predefined balancing constraints and acceptable execution time.

  • PDF

Remediation Technique for PCBs-and Phenols-Contaminated Soils by Surfactant-Enhanced Desorption (계면활성제 탈착촉진법을 이용한 폴리클로네이티드 바이페닐(PCBs)과 페놀류(Phenols)에 의하여 오염된 지반의 정화방안)

  • 박준범;윤현석;김준섭
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.5
    • /
    • pp.241-257
    • /
    • 1999
  • Subsurface contamination of industrial hazardous organic substances is a serious social issue. Decomposing the hydrophobic organic compounds in the subsurface is technically difficult and the compounds can last as long-term contaminant sources of groundwater once they are sorbed on the soil. Although the danger of contaminated subsurface has long been recognized little was known about the effective remediation technique. Focusing on the remediation of the p-Cresol and 3, 5-Dichlorobiphenyl among subsurface contaminants, this paper studies the surfactant-enhanced desorption technique. Nonionic surfactant(Triton X-100) and anionic surfactant(SDS ) were used as desorbing solvents for extracting organic compound sorbed on soil particles. Sorption characteristics of soils and organic compounds were analyzed and the applications of surfactant solution were studied through batch tests and the flexible-wall permeameter tests. As a result of the sorption isotherm tests, a log-log linear relation was obtained between the linear-partition coefficient, $K_p$ and the octanol-water partition coefficient, $K_{ow}$ of each organic compound. The result of the batch test also showed that Triton X-100 at 0.5% of solution desorbs the 3, 5-Dichlorobiphenyl 28 times more than the water in the batch tests. The surfactant-enhanced subsurface remediation technique becomes more effective when the contaminants are hydrophobic and hard to be decomposed.

  • PDF