• Title/Summary/Keyword: particulate size

Search Result 471, Processing Time 0.022 seconds

Experimental study on the generation of ultrafine-sized dry fog and removal of particulate matter (초미세 크기의 마른 안개 생성과 이를 이용한 미세먼지 제거 연구)

  • Kiwoong Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.34-39
    • /
    • 2024
  • With the fine particulate matter (PM) poses a serious threat to public health and the environment. The ultrafine PM in particular can cause serious problems. This study investigates the effectiveness of a submicron dry fog system in removing fine PM. Two methods are used to create fine dust particles: burning incense and utilizing an aerosol generator. Results indicate that the dry fog system effectively removes fine dust particles, with a removal efficiency of up to 81.9% for PM10 and 61.9% for PM2.5 after 30 minutes of operation. The dry fog, characterized by a mean size of approximately 1.5 ㎛, exhibits superior performance in comparison to traditional water spraying methods, attributed to reduced water consumption and increased contact probability between water droplets and dust particles. Furthermore, experiments with uniform-sized particles which sizes are 1 ㎛ and 2 ㎛ demonstrate the system's capability in removing ultrafine PM. The proposed submicron dry fog system shows promise for mitigating fine dust pollution in various industrial settings, offering advantages such as energy consumption and enhanced safety for workers and equipment.

Concentration Characteristics and Health Effect Assessment of Atmospheric Particulate Matters During Asian Dust Storm Episodes (황사 에피소드 발생시 대기먼지의 농도 특성과 인체 영향)

  • Kang, Gong-Unn
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.1
    • /
    • pp.21-35
    • /
    • 2009
  • The Asian dust storms which originated in the deserts of Mongolia and China transported particles to Korea and led to a high concentration of atmospheric particulate matters (PM) of more than $1000{\mu}g/m^3$ throughout the country in the spring, of 2007. Public concern, in Korea, about the possible adverse effects of these dust events has increased, as these dust storms can contain various air pollutants emitted from heavily industrialized eastern China. The objectives of this study were to understand the concentration characteristics of PM as a function of particle size between the Asian dust storm episodes and non-Asian dust period and to consider the mass size distribution of PM in the Asian dust storms and their water soluble ion species on the potential, possible effects on deposition levels in the three regions (nasopharyngeal, tracheobronchial, and alveolar) of the human respiratory system. The size distribution of PM mass concentration during the Asian dust storms showed a peak in the coarse particle region due to the long-range transport of soil particles from the deserts of Mongolia and China, which was identified by HYSPLIT-4 model for backward trajectory analysis of air arriving in the sampling site of Iksan. During the non-Asian dust period, there were two different types in PM size distribution: bimodal distribution when low concentrations of $PM_{2.5}$ were observed, while unimodal distribution having a peak in fine particle region when high concentrations of $PM_{2.5}$ were showed. This unimodal distribution with high concentrations of fine particulate and secondary air pollutants such as ${SO_4}^{2-}$, ${NO_3}^-$, ${NH_4}^+$ was found to be due to the long-range transport of air pollutants from industrialized eastern China. During the Asian dust storms, the mean concentrations of PM that can be deposited in the nasopharyngeal, tracheobronchial, and alveolar region were $128.8{\mu}g/m^3$, $216.5{\mu}g/m^3$, and $89.6{\mu}g/m^3$, respectively. During the non-Asian dust period, the mean concentrations of PM that can be deposited in the nasopharyngeal, tracheobronchial, and alveolar region were $8.4{\mu}g/m^3$, $9.5{\mu}g/m^3$ and $38.5{\mu}g/m^3$, respectively.

Application of Scaling Theories to Estimate Particle Aggregation in a Colloidal Suspension

  • Park, Soongwan;Koo, Sangkyun
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.260-266
    • /
    • 2022
  • Average aggregate size in particulate suspensions is estimated with scaling theories based on fractal concept and elasticity of colloidal gel. The scaling theories are used to determine structure parameters of the aggregates, i.e., fractal dimension and power-law exponent for aggregate size reduction with shear stress using scaling behavior of elastic modulus and shear yield stress as a function of particle concentration. The structure parameters are utilized to predict aggregate size which varies with shear stress through rheological modeling. Experimentally rheological measurement is conducted for aqueous suspension of zinc oxide particles with average diameter of 110 nm. The predicted aggregate size is about 1135 nm at 1 s-1 and 739 nm at 1000 s-1 on the average over the particle concentrations. It has been found that the predicted aggregate size near 0.1 s-1 agrees with that the measured one by a dynamic light scattering analyzer operated un-sheared.

Assessment of Inhalation Dose Sensitivity by Physicochemical Properties of Airborne Particulates Containing Naturally Occurring Radioactive Materials (천연방사성물질을 함유한 공기 중 부유입자 흡입 시 입자의 물리화학적 특성에 따른 호흡방사선량 민감도 평가)

  • Kim, Si Young;Choi, Cheol Kyu;Park, Il;Kim, Yong Geon;Choi, Won Chul;Kim, Kwang Pyo
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.4
    • /
    • pp.216-222
    • /
    • 2015
  • Facilities processing raw materials containing naturally occurring radioactive materials (NORM) may give rise to enhanced radiation dose to workers due to chronic inhalation of airborne particulates. Internal radiation dose due to particulate inhalation varies depending on particulate properties, including size, shape, density, and absorption type. The objective of the present study was to assess inhalation dose sensitivity to physicochemical properties of airborne particulates. Committed effective doses to workers resulting from inhalation of airborne particulates were calculated based on International Commission on Radiological Protection 66 human respiratory tract model. Inhalation dose generally increased with decreasing particulate size. Committed effective doses due to inhalation of $0.01{\mu}m$ sized particulates were higher than doses due to $100{\mu}m$ sized particulates by factors of about 100 and 50 for $^{238}U$ and $^{230}Th$, respectively. Inhalation dose increased with decreasing shape factor. Shape factors of 1 and 2 resulted in dose difference by about 18 %. Inhalation dose increased with particulate mass density. Particulate mass densities of $11g{\cdot}cm^{-3}$ and $0.7g{\cdot}cm^{-3}$ resulted in dose difference by about 60 %. For $^{238}U$, inhalation doses were higher for absorption type of S, M, and F in that sequence. Committed effective dose for absorption type S of $^{238}U$ was about 9 times higher than dose for absorption F. For $^{230}Th$, inhalation doses were higher for absorption type of F, M, and S in that sequence. Committed effective dose for absorption type F of $^{230}Th$ was about 16 times higher than dose for absorption S. Consequently, use of default values for particulate properties without consideration of site specific physiochemical properties may potentially skew radiation dose estimates to unrealistic values up to 1-2 orders of magnitude. For this reason, it is highly recommended to consider site specific working materials and conditions and use the site specific particulate properties to accurately access radiation dose to workers at NORM processing facilities.

Atmospheric Concentration of Polycyclic Aromatic Hydrocarbons and Heavy Metals in Suspended Particulate (大氣浮遊粉塵中 多環芳香族炭火水素 및 重金屬의 濃度)

  • 손동헌;권창호;정원태;허문영
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.7 no.1
    • /
    • pp.17-22
    • /
    • 1991
  • Total suspended particulates (TSP) in the atmosphere was collected and size-fractionated by Andersen high volume air sampler for one year (Mar. 1987 $\sim$ Feb. 1988) in Seoul. The concentrations of several polycyclic aromatic hydrocarbons and heavy metals were determined to investigate the atmospheric concentrations, seasonal variations and its relationship with the size distribution of suspended particulate matter. The arithmetic mean concentration of total suspended particulates was 200.44 $\mug/m^3$. The concentrations of heavy metals were 2433.80 for Fe, 629.49 for Zn, 600.71 for Pb, 143.87 for Cu, and 107.21 $ng/m^3$ for Mn, respectively. The concentrations of PAHs were 3.83 for benzo(a) pyrene, 2.95 for benzo(k)fluoranthene, and 4.42 $ng/m^3$ for benzo(ghi)perylene, respectively. PAHs, Pb and Zn abounded in particles below 2.0 $\mu$m, while Fe and Mn aboounded in particles above 2.0 $\mu$m. TSP and its chemical compositions showed the seasonal variations. The concentrations of anthrophogenic pollutants like TSP, PAHs and heavy metals in the fine particles were highest in winter and lowest in summer. PAHs and Pb analyzed showed significant correlations between each other and between TSP concentration in fine particles, indicating that the particles in which they are contained have a similar behavior in the atmosphere.

  • PDF

The Evaluation and Investigation of Conscious Cognition Degree on a room-size air cleaner (실내용 공기청정기의 성능평가 및 인식도 조사)

  • 손종렬;김영환;우완기
    • Journal of environmental and Sanitary engineering
    • /
    • v.17 no.3
    • /
    • pp.115-120
    • /
    • 2002
  • This study was performed on a questionnaire survey of 500 people about their awareness for indoor air pollution, and measured efficiency of air cleaner which can remove the CO and air-borne particulate of ETS(Environmental Tobacco Smoke) in air clean chamber. The room-size cleaner for measuring indoor air contaminants has been applied to evaluation of two different air cleaner such as the mechanic air cleaner with hepafilter(HPA) and the electrostatic air cleaner with metal plate. The measuring experiment was carried out in a chamber by sampling the air. The results obtained were as follows; As respondents are having their 90% of daytime indoors a day, and 38% of them can feel indoor air pollutions degrees directly by their sense of smell, For the installation of indoor pollution control equipment, 34% of all respondents installed air cleaner because of the problem of economical charge and almost respondents was not satisfied the trust of ability purified indoor air pollutants. In the experimental results, it was found that more than 95% of CD and air-borne particulate of ETS were removed within 20 minutes. The reaction kinetics of removal pollutants was verified as the pseudo-first order, Finally, it appeared that the room-sire air cleaner can be applied to new technology for removing indoor air contaminants.

The Effect of Chemical Vapor Infiltrated SiC Whiskers on the Change in the Pore Structure of a Porous SiC Body

  • Joo, Byoung-In;Park, Won-Soon;Choi, Doo-Jin;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.199-202
    • /
    • 2006
  • In this study, SiC whiskers were grown on a porous SiC diesel particulate filter for nanoparticle filtering. To grow the whiskers at the inner pore without closing the pores, we used chemical vapor infiltration with a solution source and a dilute. As the deposition time increased, the whiskers grew and formed a network structure. After 180 min of deposition, the mean diameter of the whiskers was 174 nm and the compressive strength was 58.4 MPa. The pores shrank from $10{\mu}m\;to\;0.4{\mu}m$ and, because the whiskers filed the inner pores, the gradient of permeability decreased as the deposition time increased. However, by using the network structure of whiskers deposited for 120 min and 180 min, we obtained a diesel particulate filter with pores of $0.98{\mu}m\;and\;0.4{\mu}m$, respectively. Furthermore, the filter shows better permeability than a porous body with pores of $1{\mu}m$. In short, by filtering the nanoparticulate materials, the network structure of whiskers improves the strength, reduces the pore size and minimizes the permeability drop.

Application of the full factorial design to modelling of Al2O3/SiC particle reinforced al-matrix composites

  • Altinkok, Necat
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1327-1345
    • /
    • 2016
  • $Al_2O_3$/SiC particulate reinforced (Metal Matrix Composites) MMCs which were produced by using stir casting process, bending strength and hardening behaviour were obtained using an analysis of variance (ANOVA) technique that uses full factorial design. Factor variables and their ranges were: particle size $2-60{\mu}m$; the stirring speed 450 rpm, 500 rpm and the stirring temperature $620^{\circ}C$, $650^{\circ}C$. An empirical equation was derived from test results to describe the relationship between the test parameters. This model for the tensile strength of the hybrid composite materials with $R^2$ adj = 80% for the bending strength $R^2$ adj = 89% were generated from the data. The regression coefficients of this model quantify the tensile strength and bending strengths of the effects of each of the factors. The interactions of all three factors do not present significant percentage contributions on the tensile strength and bending strengths of hybrid composite materials. Analysis of the residuals versus was predicted the tensile strength and bending strengths show a normalized distribution and thereby confirms the suitability of this model. Particle size was found to have the strongest influence on the tensile strength and bending strength.

The Separation of Particulate within PFC Decontamination Wastewater Generated by PFC Decontamination (PFC 제염 후 발생된 제염폐액 내 오염입자의 제거)

  • Kim Gye-Nam;Lee Sung-Yeol;Won Hui-Jun;Jung Chong-Hun;Oh Won-Zin;Park Jin-Ho;narayan M.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.06a
    • /
    • pp.32-39
    • /
    • 2005
  • When PFC(Perfluorocarbonate) decontamination technology is applied to removal of radioactive contaminated particulate adhered at surface during the operation of nuclear research facilities, it is necessary to develop a filtration equipment to reuse of PFC solution due to high price, also to minimize the volume of second wastewater. Contaminated characteristics of hot particulate was investigated and a filtration process was presented to remove suspended radioactive particulate from PFC decontamination wastewater generated on PFC decontamination. The range of size of hot particulate adhered at the surface of research facilities measured by SEM was $0.1{\sim}10{\mu}m$. Hot particulate of more than $2{\mu}m$ in PFC contamination wastewater was removed by first filter and then hot particulate of more than $0.2{\mu}m$ was removed by second filter. Results of filter experiments showed that filtration efficiency of PVDF(Poly vinylidene fluoride), PP(Polypropylene), Ceramic filter was $95{\sim}97\%$. A ceramic filter showed a higher filtration efficiency with a little low permeate volume. Also, a ceramic of inorganic compound could be broken easily on experiment and has a high price but was highly stable at radioactivity in comparison of PVDF and PP of a macromolecule which generate $H_2$ gas in alpha radioactivity environment.

  • PDF

Assessment of Controlled Low Strength Material using Pond Ash for Pipe Backfill Materials (매립석탄재 활용 CLSM의 관 뒤채움재 적용성 평가)

  • Young-Wook Kim;Young-Cheol Lim;Doo-Bong Yeon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.32-38
    • /
    • 2023
  • In this study, as part of the practical development of technology for CLSM using pond ash, the characteristics such as flowability, bleeding rate, and strength of the CLSM according to physical properties such as particle size distribution and particulate content of the pond ash were reviewed. As a result of analyzing the properties of the collected pond ash, it was found that the characteristics of density and particle size distribution were different. As a result of evaluating the characteristics of the CLSM for three types of pond ash, it was found that the blending conditions to satisfy the quality stipulated in ACI 229R were different, and mainly affected the particle size distribution characteristics and particulate content of the pond ash. In case of coarse-grained pond ash (PA-3), mixing conditions that satisfy the performance requirements stipulated in ACI 229R were not derived. But it is considered that further review is necessary according to particle size adjustment.