• 제목/요약/키워드: particulate PAHs

검색결과 88건 처리시간 0.021초

광주지역 미세먼지(PM-10)의 다환방향족탄화수소 분포 특성 및 발생원 추정 (Distribution Characteristics and Source Estimation of Polycyclic Aromatic Hydrocarbons in PM-10 from Gwangju)

  • 김승호;박병훈;조민철;나혜윤;박원형;서광엽;이세행;주흥수
    • 한국환경과학회지
    • /
    • 제32권4호
    • /
    • pp.243-257
    • /
    • 2023
  • This study was conducted to investigate the distribution characteristics, source identification, and health risk of polycyclic aromatic hydrocarbons (PAHs) present in particulate matter 10 (PM-10), in Gwangju. PM-10 samples were collected from September 2021 to August 2022 from three sampling sites, one located in each of the following areas: green, residential, and industrial. The average concentrations of PAHs were found to be higher in the industrial area (9.75±6.51 ng/㎥) than in the green (6.90±2.41 ng/㎥) and residential (6.74±2.38 ng/㎥) areas. Throughout the year and across all sites, five-ring PAHs accounted for the largest proportion (29.8-34.5%) of all PAHs. The concentrations of PAHs showed distinct seasonal variations, with the highest concentration observed in winter, followed by autumn, spring, and summer. Source apportionment analyses were performed using diagnostic ratios and principal component analyses, which indicated that coal/biomass combustion and vehicle emissions were the primary sources of PAHs in PM-10. The incremental lifetime cancer risk was estimated for all age groups at all sampling sites, and the results revealed a much lower risk level than the standard acceptable risk level (1×10-6).

Particulate Matters($PM_{10}$ and Particle-Bound Polycyclic Aromatic Hydrocarbons(PAHs) in Indoor and Outdoor Air in New and Sick Houses

  • Moon, Kyong-Whan;Byeon, Sang-Hoon;Choi, Dal-Woong;Lee, Jang-Hee;Kim, Young-Whan
    • 한국환경보건학회:학술대회논문집
    • /
    • 한국환경보건학회 2005년도 국제학술대회
    • /
    • pp.315-318
    • /
    • 2005
  • $PM_{10}$ and 16 PAHs were measured in indoor and outdoor air of 5 different old houses, new and sick houses, respectively. $PM_{10}$ concentrations measured in indoor of three different kinds of houses ranged from 23 to 43 ${\mu}g/m^3$ and in outdoor ranged in 40-64 ${\mu}g/m^3$. Sum of average concentrations of PAHs in old, new and sick houses indoor air were 3.7 $ng/m^3$, 6.6 $ng/m^3$ and 16.1 $ng/m^3$, respectively, which were lower than those of outdoors. Most of the indoor/outdoor ratio for PAHs in each house were less than 1.0 and significant correlation(p<0.05) between indoor and outdoor samples was observed.

  • PDF

Assessment of Reliability when Using Diagnostic Binary Ratios of Polycyclic Aromatic Hydrocarbons in Ambient Air PM10

  • Pongpiachan, Siwatt
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권18호
    • /
    • pp.8605-8611
    • /
    • 2016
  • The reliability of using diagnostic binary ratios of particulate carcinogenic polycyclic aromatic hydrocarbons (PAHs) as chemical tracers for source characterisation was assessed by collecting PM10 samples from various air quality observatory sites in Thailand. The major objectives of this research were to evaluate the effects of day and night on the alterations of six different PAH diagnostic binary ratios: An/(An + Phe), Fluo/(Fluo + Pyr), B[a]A/(B[a]A + Chry), B[a]P/(B[a]P + B[e]P), Ind/(Ind + B[g,h,i]P), and B[k]F/Ind, and to investigate the impacts of site-specific conditions on the alterations of PAH diagnostic binary ratios by applying the concept of the coefficient of divergence (COD). No significant differences between day and night were found for any of the diagnostic binary ratios of PAHs, which indicates that the photodecomposition process is of minor importance in terms of PAH reduction. Interestingly, comparatively high values of COD for An/(An + Phe) in PM10 collected from sites with heavy traffic and in residential zones underline the influence of heterogeneous reactions triggered by oxidising gaseous species from vehicular exhausts. Therefore, special attention must be paid when interpreting the data of these diagnostic binary ratios, particularly for cases of low-molecular-weight PAHs.

서울 대기에서 PAHs 광화학반응을 고려한 CMB 수용모델 결과 검토 (Sensitivity Analysis of the CMB Modeling Results by Considering Photochemical Degradation of Polycyclic Aromatic Hydrocarbons (PAHs) in the Seoul atmosphere)

  • 조예슬;정다빈;김인선;이지이;김용표
    • 한국입자에어로졸학회지
    • /
    • 제10권1호
    • /
    • pp.9-17
    • /
    • 2014
  • Several studies have been carried out on the source contribution of the particulate Polycyclic Aromatic Hydrocarbons (PAHs) over Seoul by using the Chemical Mass Balance Model (CMB)(Lee and Kim, 2007; Kim et al., 2013). To confirm the validity of the modeling results, the modified model employing a photochemical loss rate along with varying residence times and the standard model that considers no loss were compared. It was found that by considering the photochemical loss rate, a better performance was obtained as compared to those obtained from the standard model in the CMB calculation. The modified model estimated higher contributions from coke oven, transportation, and biomass burning by 4 to 8%. However, the order of the relative importance of major sources was not changed, coke oven followed by transportation and biomass burning. Thus, it was concluded that the standard CMB model results are reliable for identifying the relative importance of major sources.

Diurnal Variation, Vertical Distribution and Source Apportionment of Carcinogenic Polycyclic Aromatic Hydrocarbons (PAHs) in Chiang-Mai, Thailand

  • Pongpiachan, Siwatt
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권3호
    • /
    • pp.1851-1863
    • /
    • 2013
  • Diurnal variation of particulate polycyclic aromatic hydrocarbons (PAHs) was investigated by collecting PM10 at three different sampling altitudes using high buildings in the city center of Chiang-Mai, Thailand, during the relatively cold period in late February 2008. At site-1 (12 m above ground level), B[a]P concentrations ranged from 30.3-1,673 pg $m^{-3}$ with an average of $506{\pm}477\;pg\;m^{-3}$ contributing on average, $8.09{\pm}8.69%$ to ${\Sigma}PAHs$. Ind and B[b]F concentrations varied from 54.6 to 4,579 pg $m^{-3}$ and from 80.7 to 2,292 pg $m^{-3}$ with the highest average of $1,187{\pm}1,058\;pg\;m^{-3}$ and $963{\pm}656\;pg\;m^{-3}$, contributing on average, $19.0{\pm}19.3%$ and $15.4{\pm}12.0%$ to ${\Sigma}PAHs$, respectively. Morning maxima were predominantly detected in all observatory sites, which can be described by typical diurnal variations of traffic flow in Chiang-Mai City, showing a morning peak between 6 AM. and 9 AM. Despite the fact that most monitoring sites might be subjected to specific-site impacts, it could be seen that PAH profiles in Site-1 and Site-2 were astonishingly homogeneous. The lack of differences suggests that the source signatures of several PAHs become less distinct possibly due to the impacts of traffic and cooking emissions from ground level.

대기(大氣) 중 Benzopyrene 및 중금속(重金屬)의 농도(濃度)와 입경분포(粒徑分布) (Atmospheric Concentration and Size Distribution of Airborne Particulates, Benzopyrene and Heavy Metals)

  • 허문영;권창호;유기선;최성규;권창호;김경호;손동헌
    • 약학회지
    • /
    • 제34권1호
    • /
    • pp.1-10
    • /
    • 1990
  • Total suspended particulate (TSP) in the atmosphere was collected and size-fractionated by Andersen high volume air sampler for the past two years (Mar. 1987-Feb. 1989) in Seoul. The concentrations of several polycyclic aromatic hydrocarbons and heavy metals were determined to investigate the atmospheric concentrations, seasonal variations and its relationship with the size distribution of suspended particulate matter. The arithmetic mean concentration of total suspended particulate was $229.48\;{\mu}g/m^3$. The concentrations of heavy metals were $2971.94\;ng/m^3$ for Fe, $767.75\;ng/m^3$ for Zn, $765.80\;ng/m^3$ for Pb, $218.40\;ng/m^3$ for Cu, $129.91\;ng/m^3$ for Mn, respectively. And the concentration of PAHs were $3.23\;ng/m^3$ for benzo(a)pyrene, $2.71\;ng/m^3$ for benzo(k)fluoranthene, $4.53\;ng/m^3$ for benzo(ghi)perylene, respectively. The mass-size distribution of TSP was lowest in the particle size range $1.1-3.3\;{\mu}m$ increased as the particle size increased or decreased. But PAHs, Pb and Zn abounded in particles below $2.0\;{\mu}m$, while Fe and Mn abouned in particles above $2.0\;{\mu}m$. TSP and its chemical compositions showed the seasonal variations. The concentrations of anthrophogenic origin like TSP, PAH and heavy metals in the fine particles were highest in winter and lowest in summer. PAH and Ph analyzed showed significant correlations with each other and with TSP concentration in fine particles, indicating that the particles in which they are contained have a similar behavior in the atmosphere.

  • PDF

Fingerprint of Carcinogenic Semi-Volatile Organic Compounds (SVOCs) during Bonfire Night

  • Pongpiachan, Siwatt
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.3243-3254
    • /
    • 2013
  • It is well known that increased incidences of lung, skin, and bladder cancers are associated with occupational exposure to PAHs. Animal studies show that certain PAHs also can affect the hematopoietic and immune systems and can produce reproductive, neurologic, and developmental effects. As a consequence, several studies have been attempted to investigate the fate of PAHs in atmospheric environment during the past decades. However, there is still a lack of information in regard to the atmospheric concentration of PAHs during the "Bon Fire Night". In this study, twenty-three polycyclic aromatic hydrocarbons and twenty-eight aliphatics were identified and quantified in the $PM_{10}$ and vapour range in Birmingham ($27^{th}$ November 2001-$19^{th}$ January 2004). The measured concentrations of total particulate and vapour (P+V) PAHs were consistently higher at the BROS in both winter and summer. Arithmetic mean total (P+V) PAH concentrations were $51.04{\pm}47.62$ ng $m^{-3}$ and $22.30{\pm}19.18$ ng $m^{-3}$ at the Bristol Road Observatory Site (BROS) and Elms Road Observatory Site (EROS) respectively. In addition arithmetic mean total (P+V) B[a]P concentrations at the BROS were $0.47{\pm}0.39$ ng $m^{-3}$ which exceeded the EPAQS air quality standard of 0.25 ng $m^{-3}$. On the other hand, the arithmetic mean total (P+V) aliphatics were $81.80{\pm}69.58$ ng $m^{-3}$ and $48.00{\pm}35.38$ ng $m^{-3}$ at the BROS and EROS in that order. The lowest average of CPI and $C_{max}$ measured at the BROS supports the idea of traffic emissions being a principle source of SVOCs in an urban atmosphere. The annual trend of PAHs was investigated by using an independent t-test and oneway independent ANOVA analysis. Generally, there is no evidence of a significant decline of heavier MW PAHs from the two data sets, with only Ac, Fl, Ph, An, 2-MePh, 1+9-MePh, Fluo and B[b+j+k]F showing a statistically significant decline (p<0.05). A further attempt for statistical analysis had been conducted by dividing the data set into three groups (i.e. 2000, 2001-2002 and 2003-2004). For lighter MW compounds a significant level of decline was observed by using one-way independent ANOVA analysis. Since the annual mean of $O_3$ measured in Birmingham City Centre from 2001 to 2004 increased significantly (p<0.05), it may be possible to attribute the annul reduction of more volatile PAHs to the enhanced level of annual average $O_3$. By contrast, the heavier MW PAHs measured at the BROS did not show any significant annual reduction, implying the difficulties of 5- and 6-ring PAHs to be subject to photochemical decomposition. The deviation of SVOCs profile measured at the EROS was visually confirmed during the "Bonfire Night" festival closest to the $6^{th}$ November 2003. In this study, the atmospheric PAH concentrations were generally elevated on this day with concentrations of Fl, Ac, B[a]A, B[b+j+k]F, Ind and B[g,h,i]P being particularly high.

환경대기 중 저분자 PAHs 측정을 위한 흡착-열탈착-GC/MS 방법의 적용 (Application of Adsorption Sampling and Thermal Desorption with GC/MS Analysis for the Measurement of Low-Molecular Weight PAHs in Ambient Air)

  • 서석준;서영교;황윤정;정동희;백성옥
    • 한국대기환경학회지
    • /
    • 제30권4호
    • /
    • pp.362-377
    • /
    • 2014
  • Polycyclic aromatic hydrocarbons (PAHs) have been of particular concern since they are present both in the vapor and particulate phases in ambient air. In this study, a simple method was applied to determine the vapor phase PAHs, and the performance of the new method was evaluated with a conventional method. The simple method was based on adsorption sampling and thermal desorption with GC/MS analysis, which is generally applied to the determination of volatile organic compounds (VOCs) in the air. A combination of Carbotrap (300 mg) and Carbotrap-C (100 mg) sorbents was used as the adsorbent. Target compounds included two rings PAHs such as naphthalene, acenaphthylene, and acenaphthene. Among them, naphthalene was listed as one of the main HAPs together with a number of VOCs in petroleum refining industries in the USA. For comparison purposes, a method based on adsorption sampling and solvent extraction with GC/MS analysis was adopted, which is in principle same as the NIOSH 5515 method. The performance of the adsorption sampling and thermal desorption method was evaluated with respect to repeatabilities, detection limits, linearities, and storage stabilities for target compounds. The analytical repeatabilities of standard samples are all within 20%. Lower detection limits was estimated to be less than 0.1 ppbv. In the results from comparison studies between two methods for real air samples. Although the correlation coefficients were more than 0.9, a systematic difference between the two groups was revealed by the paired t-test (${\alpha}$=0.05). Concentrations of two-rings PAHs determined by adsorption and thermal desorption method consistently higher than those by solvent extraction method. The difference was caused by not only the poor sampling efficiencies of XAD-2 for target PAHs and but also sample losses during the solvent extraction and concentration procedure. This implies that the levels of lower molecular PAHs tend to be underestimated when determined by a conventional PAH method utilizing XAD-2 (and/or PUF) sampling and solvent extraction method. The adsorption sampling and thermal desorption with GC analysis is very simple, rapid, and reliable for lower-molecular weight PAHs. In addition, the method can be used for the measurement of VOCs in the air simultaneously. Therefore, we recommend that the determination of naphthalene, the most volatile PAH, will be better when it is measured by a VOC method instead of a conventional PAH method from a viewpoint of accuracy.

Enhancing the Intrinsic Bioremediation of PAH-Contaminated Anoxic Estuarine Sediments with Biostimulating Agents

  • Bach Quang-Dung;Kim Sang-Jin;Choi Sung-Chan;Oh Young-Sook
    • Journal of Microbiology
    • /
    • 제43권4호
    • /
    • pp.319-324
    • /
    • 2005
  • Estuarine sediments are frequently polluted with hydrocarbons from fuel spills and industrial wastes. Polycyclic aromatic hydrocarbons (PAHs) are components of these contaminants that tend to accumulate in the sediment due to their low aqueous solubility, low volatility, and high affinity for particulate matter. The toxic, recalcitrant, mutagenic, and carcinogenic nature of these compounds may require aggressive treatment to remediate polluted sites effectively. In petroleum-contaminated sediments near a petrochemical industry in Gwangyang Bay, Korea, in situ PAH concentrations ranged from 10 to 2,900 ${\mu}g/kg$ dry sediment. To enhance the biodegradation rate of PAHs under anaerobic conditions, sediment samples were amended with biostimulating agents alone or in combination: nitrogen and phosphorus in the form of slow-release fertilizer (SRF), lactate, yeast extract (YE), and Tween 80. When added to the sediment individually, all tested agents enhanced the degradation of PAHs, including naphthalene, acenaphthene, anthracene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo [a] pyrene. Moreover, the combination of SRF, Tween 80, and lactate increased the PAH degradation rate 1.2-8.2 times above that of untreated sediment (0.01-10 ${\mu}g$ PAH/ kg dry sediment/day). Our results indicated that in situ contaminant PAHs in anoxic sediment, including high molecular weight PAHs, were degraded biologically and that the addition of stimulators increased the biodegradation potential of the intrinsic microbial populations. Our results will contribute to the development of new strategies for in situ treatment of PAH-contaminated anoxic sediments.