Enhancing the Intrinsic Bioremediation of PAH-Contaminated Anoxic Estuarine Sediments with Biostimulating Agents

  • Bach Quang-Dung (Department of Environmental Engineering and Biotechnology, Myongji University) ;
  • Kim Sang-Jin (Microbiology Lab., Korea Ocean Research and Development Institute) ;
  • Choi Sung-Chan (Department of Environmental Sciences and Biotechnology, Hallym University) ;
  • Oh Young-Sook (Department of Environmental Engineering and Biotechnology, Myongji University)
  • Published : 2005.08.01

Abstract

Estuarine sediments are frequently polluted with hydrocarbons from fuel spills and industrial wastes. Polycyclic aromatic hydrocarbons (PAHs) are components of these contaminants that tend to accumulate in the sediment due to their low aqueous solubility, low volatility, and high affinity for particulate matter. The toxic, recalcitrant, mutagenic, and carcinogenic nature of these compounds may require aggressive treatment to remediate polluted sites effectively. In petroleum-contaminated sediments near a petrochemical industry in Gwangyang Bay, Korea, in situ PAH concentrations ranged from 10 to 2,900 ${\mu}g/kg$ dry sediment. To enhance the biodegradation rate of PAHs under anaerobic conditions, sediment samples were amended with biostimulating agents alone or in combination: nitrogen and phosphorus in the form of slow-release fertilizer (SRF), lactate, yeast extract (YE), and Tween 80. When added to the sediment individually, all tested agents enhanced the degradation of PAHs, including naphthalene, acenaphthene, anthracene, fluorene, phenanthrene, fluoranthene, pyrene, chrysene, and benzo [a] pyrene. Moreover, the combination of SRF, Tween 80, and lactate increased the PAH degradation rate 1.2-8.2 times above that of untreated sediment (0.01-10 ${\mu}g$ PAH/ kg dry sediment/day). Our results indicated that in situ contaminant PAHs in anoxic sediment, including high molecular weight PAHs, were degraded biologically and that the addition of stimulators increased the biodegradation potential of the intrinsic microbial populations. Our results will contribute to the development of new strategies for in situ treatment of PAH-contaminated anoxic sediments.

Keywords

References

  1. Adegbidi, H.G., R.D. Briggs, T.A. Volk, E.H. White, and L.P. Abrahanson. 2003. Effect of organic amendments and slow-release nitrogen fertilizer on willow biomass production and soil chemical characteristics. Biomass and Bioenergy 25, 389-398 https://doi.org/10.1016/S0961-9534(03)00038-2
  2. Alexander, M. 1999. Biodegradation and bioremediation, 2nd ed. p. 275. Academic Press, San Diego, California
  3. APHA, AWWA, WEF. 1998. Standard methods for the examination of water and wastewater, 20th ed. APHA, Washington, DC
  4. Carter, M.R. 1993. Soil sampling and methods of analysis, p. 141- 394. Canadian Society of Soil Science, Lewis Publishers, Boca Raton, Florida
  5. Chang, B.V., S.W. Chang, and S.Y. Yuan. 2003. Anaerobic degradation of polycyclic aromatic hydrocarbons in sludge. Adv. Environ. Res. 7, 623-628 https://doi.org/10.1016/S1093-0191(02)00047-3
  6. Chang, B.V., L.C. Shiung, and S.Y. Yuan. 2002. Anaerobic biodegradation of polycyclic aromatic hydrocarbon in soil. Chemosphere 48, 717-724 https://doi.org/10.1016/S0045-6535(02)00151-0
  7. Choi, S.-C., Y.-H. Lee, and Y.-S. Oh. 2003. Treatability tests for the bioremediation of unsanitary landfill waste soil. J. Microbiol. 41, 169-173
  8. Coates, J.D., J. Woodward, J. Allen, P. Philp, and D.R. Lovley. 1997. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microbiol. 63, 3589-3593
  9. Elliott, M. 2001. Polycyclic aromatic hydrocarbons and redox parameter in a creosote-contaminated aquifer. MS thesis. Virginia Polytechnic Institute and State University, USA
  10. Garon, D., S. Krivobok, D. Wouessidjewe, and F. Seigle-Murandi. 2002. Influence of surfactant on solubilization and fungal degradation of fluorene. Chemosphere 47, 303-309 https://doi.org/10.1016/S0045-6535(01)00299-5
  11. Gibbons, J.H. 1991. Bioremediation for marine oil spills. U.S. Congress, Office of Technology Assessment. Washington D.C
  12. Genthner, B.R.S., G.T. Townsend, S.E. Lantz, and J.G. Mueller. 1997. Persistence of polycyclic aromatic hydrocarbon components of creosote under anaerobic enrichment conditions. Arch. Environ. Contam. Toxicol. 32, 99-105 https://doi.org/10.1007/s002449900160
  13. Han, M.-J., H.-T. Choi, and H.-G. Song. 2003. Degradation of phenanthrene by Trametes versicolor and its laccase. J. Microbiol. 42, 94-98
  14. Hayes, L.A., K.P. Nevin, and D.R. Lovley. 1999. Role of prior exposure on anaerobic degradation of naphthalene and phenanthrene in marine harbor sediments. Organic Geochem. 30, 937- 945 https://doi.org/10.1016/S0146-6380(99)00077-7
  15. Huntley, S.L. and N.L. Bonnevie. 1995. Polycyclic aromatic hydrocarbon and petroleum hydrocarbon contamination in sediment from the Newark Bay Estuary, New Jersey. Arch. Environ. Contam. Toxicol. 28, 93-107 https://doi.org/10.1007/BF00213974
  16. Joo, C.-S., Y.-S. Oh, and W.-J. Chung. 2001. Evaluation of bioremediation effectiveness by resolving rate-limiting parameters in diesel-contaminated soil. J. Microbiol. Biotechnol. 11, 607- 613
  17. Kanaly, R.A. and S. Harayahama. 2000. Biodegradation of highmolecular- weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182, 2059-2067 https://doi.org/10.1128/JB.182.8.2059-2067.2000
  18. Karthikeyan, R. and A. Bhandari. 2001. Anaerobic biotransformation of aromatic and polycyclic aromatic hydrocarbons in soil microcosms: a review. Hazard. Subst. Res. 3, 1-19
  19. Khim, J.S., K.T. Lee, K. Kannan, D.L. Villeneuve, J.P. Giesy, and C.H. Koh. 2001. Trace organic contaminants in sediment and water from Ulsan Bay and this vicinity, Korea. Arch. Environ. Contam. Toxicol. 40, 141-150 https://doi.org/10.1007/s002440010157
  20. Lim, W.-H. 1998. Contamination of polycyclic aromatic hydrocarbons (PAHs) in Masan Bay, Korea. MS thesis. Seoul National University, Korea
  21. Lovley, D.R., M.J. Baedecker, D.J. Lonergan, I.M. Cozzarelli, E.J.P. Phillips, and D.I. Siegel. 1989. Oxidation of aromatic contaminants coupled to microbial iron reduction. Nature 339, 297- 300 https://doi.org/10.1038/339297a0
  22. Lovley, D.R., J.C. Woodward, and F.H. Chapelle. 1994. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370, 128-131 https://doi.org/10.1038/370128a0
  23. Lovley, D.R., J.C. Woodward, and F.H. Chapelle. 1996. Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms. Appl. Environ. Microbiol. 62, 288-291
  24. Maier, R.M., I.L. Pepper, and C.P. Gerba. 2000. Environmental microbiology, p. 335. Academic Press. San Diego, California
  25. McFarland, M.J. and R.C. Sims. 1991. Thermodynamic framework for evaluating PAH degradation in the subsurface. Groundwater 29, 885-896 https://doi.org/10.1111/j.1745-6584.1991.tb00576.x
  26. Mihelcic, J.R. and R.G. Luthy. 1988. Degradation of polycyclic aromatic hydrocarbon compounds under various redox conditions in soil-water systems. Appl. Environ. Microbiol. 54, 1182-1187
  27. Nieman, J.K.C., R.C. Sims, J.E. McLean, J.L. Sims, and D.L. Sorensen. 2001. Fate of pyrene in contaminated soil amended with alternate electron acceptors. Chemosphere 44, 1265-1271 https://doi.org/10.1016/S0045-6535(00)00304-0
  28. Prahl, F.G. and R. Carpenter. 1983. Polycyclic aromatic hydrocarbon- phase associations in Washington coastal sediment. Geochim. Cosmochim. Acta 47, 1013-1023 https://doi.org/10.1016/0016-7037(83)90231-4
  29. Prak, D.J.L. and P.H. Pritchard. 2002. Solubilization of polycyclic aromatic hydrocarbon mixtures in micellar nonionic surfactant solutions. Wat. Res. 36, 3463-3472 https://doi.org/10.1016/S0043-1354(02)00070-2
  30. Rittmann, B.E. and P.L. McCarty. 2001. Environmental biotechnology: principles and applications, p. 535-537. McGraw-Hill, New York, New York
  31. Rothermich, M.M, L.A. Hayes, and D.R. Lovley. 2002. Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environ. Sci. Technol. 36, 4811-4817 https://doi.org/10.1021/es0200241
  32. Shin, S.-K., Y.-S. Oh, and S.-J. Kim. 1999. Biodegradation of phenanthrene by Sphingomonas sp. strain KH3-2. J. Microbiol. 37, 185-192
  33. Thomas, S.P., H.D. Stensel, and S.E. Strand. 1998. Biodegradation of polyaromatic hydrocarbons by marine bacteria: effect of solid phase on degradation kinetics. Wat. Res. 33, 868-880 https://doi.org/10.1016/S0043-1354(98)00232-2
  34. Wang, X.-C., Y.-X. Zhang, and R.F. Chen. 2001. Distribution and partitioning of polycyclic aromatic hydrocarbons (PAHs) in different size fractions in sediments from Boston Harbor, United States. Mar. Pollut. Bull. 42, 1139-1149 https://doi.org/10.1016/S0025-326X(01)00129-1
  35. Weiner, J.M. and D.R. Lovley. 1998. Rapid benzene degradation in methanogenic sediments from a petroleum-contaminated aquifer. Appl. Environ. Microbiol. 64, 1937-1939
  36. Yuan, S.Y., S.H. Wei, and B.V. Chang. 2000. Biodegradation of polycyclic aromatic hydrocarbons by a mixed culture. Chemosphere 41, 1463-1468 https://doi.org/10.1016/S0045-6535(99)00522-6