Browse > Article
http://dx.doi.org/10.7314/APJCP.2015.16.18.8605

Assessment of Reliability when Using Diagnostic Binary Ratios of Polycyclic Aromatic Hydrocarbons in Ambient Air PM10  

Pongpiachan, Siwatt (NIDA Center for Research & Development of Disaster Prevention & Management, School of Social and Environmental Development, National Institute of Development Administration (NIDA))
Publication Information
Asian Pacific Journal of Cancer Prevention / v.16, no.18, 2016 , pp. 8605-8611 More about this Journal
Abstract
The reliability of using diagnostic binary ratios of particulate carcinogenic polycyclic aromatic hydrocarbons (PAHs) as chemical tracers for source characterisation was assessed by collecting PM10 samples from various air quality observatory sites in Thailand. The major objectives of this research were to evaluate the effects of day and night on the alterations of six different PAH diagnostic binary ratios: An/(An + Phe), Fluo/(Fluo + Pyr), B[a]A/(B[a]A + Chry), B[a]P/(B[a]P + B[e]P), Ind/(Ind + B[g,h,i]P), and B[k]F/Ind, and to investigate the impacts of site-specific conditions on the alterations of PAH diagnostic binary ratios by applying the concept of the coefficient of divergence (COD). No significant differences between day and night were found for any of the diagnostic binary ratios of PAHs, which indicates that the photodecomposition process is of minor importance in terms of PAH reduction. Interestingly, comparatively high values of COD for An/(An + Phe) in PM10 collected from sites with heavy traffic and in residential zones underline the influence of heterogeneous reactions triggered by oxidising gaseous species from vehicular exhausts. Therefore, special attention must be paid when interpreting the data of these diagnostic binary ratios, particularly for cases of low-molecular-weight PAHs.
Keywords
Diagnostic binary ratios; PAHs; photolysis; spatial distribution;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Pongpiachan S (2013a). Vertical distribution and potential risk of particulate polycyclic aromatic hydrocarbons in high buildings of Bangkok, Thailand. Asian Pac J Cancer Prev, 14, 1865-77.   DOI
2 Pongpiachan S (2013b). Diurnal variation, vertical distribution and source apportionment of carcinogenic polycyclic aromatic hydrocarbons (PAHs) in Chiang-Mai, Thailand. Asian Pac J Cancer Prev, 14, 1851-63.   DOI
3 Pongpiachan S, Choochuay C, Hattayanone M, et al (2013a). Temporal and spatial distribution of particulate carcinogens and mutagens in bangkok, Thailand. Asian Pac J Cancer Prev, 14, 1879-87.   DOI
4 Pongpiachan S, Ho KF, Cao J (2013b). Estimation of gas-particle partitioning coefficients (kp) of carcinogenic polycyclic aromatic hydrocarbons by carbonaceous aerosols collected at chiang-mai, Bangkok and Hat-Yai, Thailand. Asian Pac J Cancer Prev, 14, 3369-84.   DOI
5 Pongpiachan S, Tipmanee D, Deelaman W, et al (2013c). Risk assessment of the presence of polycyclic aromatic hydrocarbons (PAHs) in coastal areas of Thailand affected by the 2004 Tsunami. Mar Pollut Bull, 76, 370-8.   DOI
6 Pongpiachan S (2014). Application of binary diagnostic ratios of polycyclic aromatic hydrocarbons for identification of tsunami 2004 backwash sediments in khao lak, Thailand, Scientific World J, 485068, 14.
7 Pongpiachan S (2015). A preliminary study of using polycyclic aromatic hydrocarbons as chemical tracers for traceability in soybean products. Food Control, 47, 392-400.   DOI
8 Pongpiachan S, Tipmanee D, Khumsup C, et al (2015a). Assessing Risks to Adults and Preschool Children Posed by PM2.5-bound polycyclic aromatic hydrocarbons (pahs) during a biomass burning episode in northern Thailand. Sci Total Environ, 508, 435-44.   DOI
9 Pongpiachan S, Hattayanone M, Choochuay C, et al (2015b). Enhanced PM10 Bounded PAHs from shipping emissions. Atmos Environ, 108, 13-9.   DOI
10 Ringuet J, Albinet A, Garziandia EL, et al (2012a). Reactivity of polycyclic aromatic compounds (PAHs, NPAHs and OPAHs) adsorbed on natural aerosol particles exposed to atmospheric oxidants. Atmos Environ, 61, 15-22.   DOI
11 Ringuet J, Albinet A, Garziandia EL, et al (2012b). Diurnal/nocturnal concentrations and sources of particulate-bound PAHs, OPAHs, and NPAHs at traffic and suburban sites in the region of Paris (France). Sci Total Environ, 437, 297-305.   DOI
12 SrAm RJ, BinkovA B, Rossner P, et al (1999). Adverse Reproductive Outcomes from Exposure to Environmental Mutagens. Mutat Res-Fund Mol M, 428, 203-15.   DOI
13 Tipmanee D, Deelaman W, Pongpiachan S, et al (2012). Using polycyclic aromatic hydrocarbons (PAHs) as a chemical proxy to indicate tsunami 2004 backwash in khao lak coastal area, Thailand. Nat Hazards Earth Syst Sci, 12, 1441-51.   DOI
14 US-EPA (1999). Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air. Compendium method IO-2.2. Sampling of Ambient Air for PM10 Using an Andersen Dichotomous Sampler. EPA/625/R-96/010a. Available from: http://www.epa.gov/ttnamti1/files/ambient/inorganic/mthd-2-2.pdf.
15 Valavanidis A, Loridas S, Vlahogianni T, et al (2009). Influence of ozone on traffic-related particulate matter on the generation of hydroxyl radicals through a heterogeneous synergistic effect. J Hazard Mater, 162, 886-92.   DOI
16 Venkatachalam S, Kuppusamy P, Kuppusamy B, et al (2014). The potency of essential nutrient taurine on boosting the antioxidant status and chemopreventive effect against benzo(a)pyrene-induced experimental lung cancer. Biomed Prev Nutr, 4, 251-5.   DOI
17 Wang Q, Xue Y (2015). Characterization of solid tumors induced by polycyclic aromatic hydrocarbons in mice. Med Sci Monit Basic Res, 21, 81-5.   DOI
18 Wang D, Chen J, Xu Z, et al (2005). Disappearance of polycyclic aromatic hydrocarbons sorbed on surfaces of pine [pinua thunbergii] needles under irradiation of sunlight: volatilization and photolysis. Atmos Environ, 39, 4583-91.   DOI
19 Wang D, Li Y, Yang M, et al (2008). Decomposition of polycyclic aromatic hydrocarbons in atmospheric aqueous droplets through sulfate anion radicals: an experimental and theoretical study. Sci Total Environ, 393, 64-71.   DOI
20 Wang Z, Na G, Ma X, et al (2013). Occurrence and gas/particle partitioning of PAHs in the atmosphere from the north pacific to the arctic ocean. Atmos Environ, 77, 640-6.   DOI
21 Wilson JG, Kingham S, Pearce J, et al (2005). A review of intraurban variations in particulate air pollution: implications for epidemiological research. Atmos Environ, 39, 6444-62.   DOI
22 Wongphatarakul V, Friedlander SK, Pinto JP (1998). A comparative study of PM2.5 ambient aerosol chemical databases. Environ Sci Technol, 32, 3926-34.   DOI
23 Wortham H, Nguyen EB, Masclet P (1993). Study of heterogeneous reactions of polycyclic aromatic hydrocarbons I: Weakening of PAH-support bonds under photonic irradiation. Sci Total Environ, 128, 1-11.   DOI
24 Zhang Y, Shu J, Liu C, et al (2013). Heterogeneous Reaction of Particle-Associated Triphenylene with NO3 Radicals. Atmos Environ, 68, 114-9.   DOI
25 Crepeaux G, Kremarik PB, Sikhayeva N, et al (2012). Late Effects of a Perinatal Exposure to a 16 PAH Mixture: increase of anxiety-related behaviours and decrease of regional brain metabolism in adult male rats. Toxicol Lett, 211, 105-13.   DOI
26 Alam MS, Delgado-Saborit JM, Stark C, et al (2013). Using atmospheric measurements of PAH and quinone compounds at roadside and Urban background sites to assess sources and reactivity. Atmos Environ, 77, 24-35.   DOI
27 Annamalai J, Namasivayam V (2015). Endocrine disrupting chemicals in the atmosphere: their effects on humans and wildlife. Environ Int, 76, 78-97.   DOI
28 Caldwell MM, Flint SD (1994). Stratospheric ozone reduction, Solar UV-B radiation and terrestrial ecosystems. Climatic Change, 28, 375-94.   DOI
29 Dachs J, Eisenreich SJ (2000). Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons. Environ Sci Technol, 34, 3690-7.   DOI
30 Gao B, Wang XM, Zhao XY, et al (2015). Source apportionment of atmospheric PAHs and their toxicity using PMF: impact of Gas/Particle partitioning. Atmos Environ, 103, 114-20.   DOI
31 Gogou A, Stratigakis N, Kanakidou M, et al (1996). Organic aerosol in eastern mediterranean: component source reconciliation by using molecular markers and atmospheric back trajectories. Org Geochem, 25, 79-96.   DOI
32 Hanedar A, Alp K, Kaynak B, et al (2011). Concentrations and Sources of PAHs at Three Stations in Istanbul, Turkey. Atmos Res, 99, 391-9.   DOI
33 Jang E, Alam MS, Harrison RM (2013). Source apportionment of polycyclic aromatic hydrocarbons in urban air using positive matrix factorization and spatial distribution analysis. Atmos Environ, 79, 271-85.   DOI
34 Jariyasopit N, Zimmermann K, Schrlau J, et al (2014). Heterogeneous Reactions of Particulate Matter-Bound PAHs and NPAHs with $NO_3/N_2O_5$, OH Radicals, and $O_3$ under simulated long-range atmospheric transport conditions: reactivity and mutagenicity. Environ Sci Technol, 48, 10, 155-64.
35 Kim D, Young TM, Anastasio C (2013). Phototransformation rate constants of PAHs associated with soot particles. Sci Total Environ, 443, 896-903.   DOI
36 Limbeck A, Handler M, Puls C, et al (2009). Impact of mineral components and selected trace metals on ambient PM10 concentrations. Atmos Environ, 43, 530-8.   DOI
37 Liu J, Li J, Lin T, et al (2013). Diurnal and nocturnal variations of PAHs in the Lhasa atmosphere, tibetan plateau: implication for local sources and the impact of atmospheric degradation processing. Atmos Res, 124, 34-43.   DOI
38 Niu J, Sun P, Schramm KW (2007). Photolysis of Polycyclic Aromatic Hydrocarbons Associated with Fly Ash Particles under Simulated Sunlight Irradiation. J Photoc Photobio A, 186, 93-8.   DOI
39 Moorthy B, Chu C, Carlin DJ (2015). Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci, 145, 5-15.   DOI
40 Muller AK, Farombi EO, Moller P, et al (2004). DNA damage in lung after oral exposure to diesel exhaust particles in big blue$^{(R)}$ rats. Mutat Res-Fund Mol M, 550, 123-32.   DOI
41 Odabasi M, Cetin E, Sofuoglu A (2006). Determination of octanol-air partition coefficients and super-cooled liquid Vapor Pressures of PAHs as a function of temperature: application to gas-particle partitioning in an urban atmosphere. Atmos Environ, 40, 6615-25.   DOI
42 Ohura T, Horii Y, Kojima M, et al (2013). Diurnal variability of chlorinated polycyclic aromatic hydrocarbons in Urban Air, Japan. Atmos Environ, 81, 84-91.   DOI
43 Pongpiachan S, Bualert S, Sompongchaiyakul P, et al (2009). Factors affecting sensitivity and stability of polycyclic aromatic hydrocarbons. Anal Lett, 42, 2106-30.   DOI
44 Pongpiachan S (2010). Atmospheric lifetimes and traveling distances of airborne carcinogenic polycyclic aromatic hydrocarbons. Chinese. J Clinic (Electronic Edition), 16. (http://journal.shouxi.net/qikan/articledes.php?id=537551).
45 Pongpiachan S, Ho KF, Lee SC (2010). A Study of Gas-Particle Partitioning of PAH According to Adsorptive Models and Season. In Air Pollution XVIII, WIT press, pp. 37-48. ISBN: 978-1-84564-450-5, ISSN (Online): 1743-3541, ISSN (Print): 1746-448X, June 2010. (Conference Book)