• Title/Summary/Keyword: particle-structure contact

Search Result 38, Processing Time 0.033 seconds

Numerical Analysis on Deformation of Submerged Structures using 2-Dimensional VOF-DEM Model

  • Kim, Mi-Kum;Kim, Chang-Je
    • Journal of Navigation and Port Research
    • /
    • v.31 no.9
    • /
    • pp.785-791
    • /
    • 2007
  • In this paper we proposed a model that the deformation of the submerged rubble mound breakwaters composed with materials of various size, induced by wave action, can be computed. The water particle kinematics by waves in porous mound structure are computed by CADMAS-SURF, then the deformation of structure is computed using DEM module. To investigate the interaction of wave and sectional deformation of structures, analysis is accomplished by two steps. Analysis at the first step is executed with incipient mound. And analysis at the second step is executed with deformed mound by wave action. Furthermore, behaviors of materials are influenced by various properties such as the contact stiffness and the friction angle. Therefore, in order to present the behavior of the element caused by various properties, computations are accomplished with random coefficients by using the Monte Carlo simulation.

Slurry Particle behavior inside Pad Pore during Chemical Mechanical Polishing (기계화학적 연마공정중 패드내 미세공극에서의 연마입자의 거동)

  • Kwark, Haslomi;Yang, Woo-Yul;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.28 no.1
    • /
    • pp.7-11
    • /
    • 2012
  • In this paper, the results of finite element(FE) analysis of chemical mechanical polishing(CMP) process using 2-dimensional elements were discussed. The objective of this study is to find the generation mechanism of microscratches on a wafer surface during the process. Especially, a FE model with a particle inside pad pore was considered to observe how such a contact situation could contribute to microscratch generation. The results of the finite element simulations revealed that during CMP process the pad-particle mixture could be formed and this would be a major factor leading to microscratch generation.

Integration of 3-Dim SPH Scheme into the ExLO Code (극대변형 해석을 위한 SPH 수치기법 개발 및 ExLO 코드 연계)

  • Lee, Min-Hyung;Cho, Young-Jun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.532-537
    • /
    • 2011
  • This paper describes the development of SPH(Smooth Particle Hydrodynamics) scheme and integration into the multi-material shock physics code(ExLO) for the purpose of the application to the extreme large deformation problems. SPH numerical scheme has been extended into the fluid dynamics and the high-speed impact events, such as space structure protection against space debris and meteorite catering. Like other hydrocodes, SPH scheme also solves the conservation equations with the constitutive equation including equation of state. The benchmark problem, Taylor-Impact test, was simulated and the predictions show good agreements with both the published numerical data and experimental data. Currently, the contact treatment between materials is under development.

$Gei^3ta^1$ in Taiwan Mandarin--- A Particular Construction

  • Lee, Chia-Chun
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.268-274
    • /
    • 2007
  • The present paper investigates a particular structure in Taiwan Mandarin, "(NP) + (intensifier) + $gei^3ta^1$ "give him/it"+ adjective" in terms of construction grammar. The structure is mostly observed in utterances of younger generation. Though it is not regarded as a grammatical or standard structure, it is still a register of language. The structure lays emphasis on speaker's attitude toward an undesired, unpleasant event. In most cases, the attitude tends to be negative. The events or propositions must have existed or been completed. The adjectives compatible with this structure belong to category of higher degree. The grammatical usage illustrates semantic bleaching of $gei^3ta^1$. And the changes from giving to a grammatical particle denoting subjective belief is a kind of subjectification. Moreover, $ta^1$ could refer to events or situation expressed by a more complicated grammatical structure, or denotes nothing as a dummy word. Though many previous studies paid attention to the newly developed structure resulted from language contact, the adequate account was not provided. It is hoped through this investigation, we will get a better understanding of this particular structure.

  • PDF

Growth of Nanocrystalline Diamond on W and Ti Films (W 및 Ti 박막 위에서 나노결정질 다이아몬드의 성장 거동)

  • Park, Dong-Bae;Myung, Jae-Woo;Na, Bong-Kwon;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.145-152
    • /
    • 2013
  • The growth behavior of nanocrystalline diamond (NCD) film has been studied for three different substrates, i.e. bare Si wafer, 1 ${\mu}m$ thick W and Ti films deposited on Si wafer by DC sputter. The surface roughness values of the substrates measured by AFM were Si < W < Ti. After ultrasonic seeding treatment using nanometer sized diamond powder, surface roughness remained as Si < W < Ti. The contact angles of the substrates were Si ($56^{\circ}$) > W ($31^{\circ}$) > Ti ($0^{\circ}$). During deposition in the microwave plasma CVD system, NCD particles were formed and evolved to film. For the first 0.5h, the values of NCD particle density were measured as Si < W < Ti. Since the energy barrier for heterogeneous nucleation is proportional to the contact angle of the substrate, the initial nucleus or particle densities are believed to be Si < W < Ti. Meanwhile, the NCD growth rate up to 2 h was W > Si > Ti. In the case of W substrate, NCD particles were coalesced and evolved to the film in the short time of 0.5 h, which could be attributed to the fact that the diffusion of carbon species on W substrate was fast. The slower diffusion of carbon on Si substrate is believed to be the reason for slower film growth than on W substrate. The surface of Ti substrate was observed as a vertically aligned needle shape. The NCD particle formed on the top of a Ti needle should be coalesced with the particle on the nearby needle by carbon diffusion. In this case, the diffusion length is longer than that of Si or W substrate which shows a relatively flat surface. This results in a slow growth rate of NCD on Ti substrate. As deposition time is prolonged, NCD particles grow with carbon species attached from the plasma and coalesce with nearby particles, leaving many voids in NCD/Ti interface. The low adhesion of NCD films on Ti substrate is related to the void structure of NCD/Ti interface.

A Study of Synthesis and Property of $CaCO_3$/Organic Core-Shell Particle (탄산칼슘 /유기계 Core-Shell 입자의 제조와 물성에 관한 연구)

  • Seul, Soo-Duk
    • Polymer(Korea)
    • /
    • v.34 no.1
    • /
    • pp.38-44
    • /
    • 2010
  • Core-shell particles of inorganic/organic pair were synthesized from $CaCO_3$ absorbed sodium dodecyl benzene sulfonate(SDBS) surfactant. Shell components were synthesized by sequential emulsion polymerization. Various monomers were used as shell components such as methyl methacrylate(MMA), ethyl acrylate(EA), butyl acrylate(BA), and styrene(St). Ammonium persulfate(APS) was used as an initiator and 2-ethylhexyl acylate(2-EHA) was used as a functional monomer, In the $CaCO_3$/organic core-shell particle polymerization, $CaCO_3$ absorbed surfactant SDBS of 0.5 wt% was prepared first and then core $CaCO_3$ was encapsulated by emulsion polymerization. 0.1 wt% of APS was added sequentially to minimize the formation of new monomer particle during shell polymerization. The structure of inorganic/organic core-shell particles were characterized by measuring the decomposition degree of $CaCO_3$ using HCl solution, thermogravimetric analyzer, scanning electron microscope, and transmission electron microscope.

The Contact and Parallel Analysis of Smoothed Particle Hydrodynamics (SPH) Using Polyhedral Domain Decomposition (다면체영역분할을 이용한 SPH의 충돌 및 병렬해석)

  • Moonho Tak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.21-28
    • /
    • 2024
  • In this study, a polyhedral domain decomposition method for Smoothed Particle Hydrodynamics (SPH) analysis is introduced. SPH which is one of meshless methods is a numerical analysis method for fluid flow simulation. It can be useful for analyzing fluidic soil or fluid-structure interaction problems. SPH is a particle-based method, where increased particle count generally improves accuracy but diminishes numerical efficiency. To enhance numerical efficiency, parallel processing algorithms are commonly employed with the Cartesian coordinate-based domain decomposition method. However, for parallel analysis of complex geometric shapes or fluidic problems under dynamic boundary conditions, the Cartesian coordinate-based domain decomposition method may not be suitable. The introduced polyhedral domain decomposition technique offers advantages in enhancing parallel efficiency in such problems. It allows partitioning into various forms of 3D polyhedral elements to better fit the problem. Physical properties of SPH particles are calculated using information from neighboring particles within the smoothing length. Methods for sharing particle information physically separable at partitioning and sharing information at cross-points where parallel efficiency might diminish are presented. Through numerical analysis examples, the proposed method's parallel efficiency approached 95% for up to 12 cores. However, as the number of cores is increased, parallel efficiency is decreased due to increased information sharing among cores.

Evaluation on performances of a real-time microscopic and telescopic monitoring system for diagnoses of vibratory bodies

  • Jeon, Min Gyu;Doh, Deog Hee;Kim, Ue Kan;Kim, Kang Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1275-1280
    • /
    • 2014
  • In this study, the performance of a real-time micro telescopic monitoring system is evaluated, in which an artificial neural network is adopted for the diagnoses of vibratory bodies, such as solid piping system or machinery. The structural vibration was measured by a non-contact remote sensing method, in which images of a high-speed high-definition camera were used. The structural vibration data that can be obtained by the PIV (particle image velocimetry) technique were used for training the neural network. The structures of the neural network are dynamically changed and their performances are evaluated for the constructed diagnosis system. Optimized structures of the neural network are proposed for real-time diagnosis for the piping system. It was experimentally verified that the performances of the neural network used for real-time monitoring are influenced by the types of the vibration data, such as minimum, maximum and average values of the vibration data. It concludes that the time-mean values are most appropriate for monitoring the piping system.

Effects of Inorganic Fillers on Mechanical Properties of Silicone Rubber

  • Kim, Gyu Tae;Lee, Young Seok;Ha, KiRyong
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.142-148
    • /
    • 2019
  • In this study, the effects of filler particle size and shape on the physical properties of silicone rubber composites were investigated using inorganic fillers (Minusil 5, Celite 219, and Nyad 400) except silica, which was already present as a reinforcing filler of silicone rubber. Fillers with small particle sizes are known to facilitate the formation of the bound rubber by increasing the contact area with the polymer. However, in this experiment, the bound rubber content of Celite 219-added silicone composite was higher than that of Minusil 5-added silicone composite. This was attributed to the porous structure of Celite 219, which led to an increase in the internal surface area of the filler. When the inorganic fillers were added, both thermal decomposition temperature and thermal stability were improved. The bound rubber formed between the silicone rubber and inorganic filler affected the degree of crosslinking of the silicone composite. It is well-known that as the size of the reinforcing filler decreases, the reinforcing effect increases. However, in this experiment, the hardness of the composite material filled with Celite 219 was the highest compared to the other three composites. Furthermore, the highest value of 2.19 MPa was observed for 100% modulus, and the fracture elongation was the lowest at 469%. This was a result of excellent interaction between Celite 219 filler and silicone rubber.

Synthesis of Multiwall Carbon Nanotube/Graphene Composite by Aerosol Process and Its Characterization for Supercapacitors (에어로졸 공정에 의한 Multiwall carbon nanotube/Graphene 복합체 제조 및 슈퍼커패시터 특성평가)

  • Jo, Eun Hee;Kim, Sun Kyung;Chang, Hankwon;Lee, Chong Min;Park, Su-Ryeon;Choi, Ji-hyuk;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.12 no.4
    • /
    • pp.127-134
    • /
    • 2016
  • A multiwall carbon nanotube (MWCNT)/graphene (GR) composite was synthesized for an enhanced supercapacitor. Aerosol spray pyrolysis (ASP) was employed to synthesize the MWCNT/GR composites using a colloidal mixture of MWCNT and graphene oxide (GO). The effect of the weight ratio of the MWCNT/GO on the particle properties including the morphology and layered structure were investigated. The morphology of MWCNT/GR composites was generally the shape of a crumpled paper ball, and the average composite size was about $5{\mu}m$. MWCNT were uniformly dispersed in GR sheets and the MWCNT not only increase the basal spacing but also bridge the defects for electron transfer between GR sheets. Thus, it was increasing electrolyte/electrode contact area and facilitating transportation of electrolyte ion and electron in the electrode. Electrochemical data demonstrate that the MWCNT/GR (weight ratio=0.1) composite possesses a specific capacitance of 192 F/g at 0.1 A/g and good rate capability (88% capacity retention at 4 A/g) using two-electrode testing system.