• 제목/요약/키워드: particle-based method

검색결과 1,152건 처리시간 0.027초

Feeder Reconfiguration Using Binary Coding Particle Swarm Optimization

  • Wu, Wu-Chang;Tsai, Men-Shen
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권4호
    • /
    • pp.488-494
    • /
    • 2008
  • This paper proposes an effective approach based on binary coding Particle Swarm Optimization (PSO) to identify the switching operation plan for feeder reconfiguration. The proposed method considers the advantages and disadvantages of existing particle swarm optimization method and redefined the operators of PSO algorithm to fit the application field of distribution systems. Shift operator is proposed to construct the binary coding particle swarm optimization for feeder reconfiguration. A typical distribution system of Taiwan Power Company is used in this paper to demonstrate the effectiveness of the proposed method. The test results show that the proposed method can apply to feeder reconfiguration problems more effectively and stably than existing method.

반원형실린더 초기후류를 위한 입자와법의 하이브리드 확산기법 (Hybrid Diffusion Scheme of vortex Particle Method for Early Wake Past Semicircular Cylinder)

  • 조지영;이상환
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.771-779
    • /
    • 2004
  • Unsteady behavior of the early wake in the viscous flow field past an impulsively started semicircular cylinder is studied numerically. In this paper, we propose the hybrid diffusion scheme to simulate dynamic characteristics of wake such as a fishtail-like flapping and an alternate vortex-shedding more accurately. This diffusion scheme based on particle strength exchange is mixed with the stochastic nature of random walk method. Also, the viscous splitting algorithm which calculates convective and diffusion terms successively is applied in order to handle random walk method effectively. Consequently, the early behavior of wake due to the breakdown of symmetrical vortici balance is more practically simulated with the vortex particle method.

Hybrid Particle-Mesh 방법에 적합한 다중영역 방법 (A MULTI-DOMAIN APPROACH FOR A HYBRID PARTICLE-MESH METHOD)

  • 이승재;서정천
    • 한국전산유체공학회지
    • /
    • 제19권2호
    • /
    • pp.72-78
    • /
    • 2014
  • A hybrid particle-mesh method as the combination between the Vortex-In-Cell (VIC) method and penalization method has been achieved in recent years. The VIC method, which is based on the vorticity-velocity formulation, offers particle-mesh algorithms to numerically simulate flows past a solid body. The penalization method is used to enforce boundary conditions at a body surface with a decoupling between body boundaries and computational grids. The main advantage of the hybrid particle-mesh method is an efficient implementation for solid boundaries of arbitrary complexity on Cartesian grids. However, a numerical simulation of flows in large domains is still not too easy. In this study, a multi-domain approach is thus proposed to further reduce computation cost and easily implement it. We validate the implementation by numerical simulations of an incompressible viscous flow around an impulsively started circular cylinder.

Occluded Object Motion Estimation System based on Particle Filter with 3D Reconstruction

  • Ko, Kwang-Eun;Park, Jun-Heong;Park, Seung-Min;Kim, Jun-Yeup;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제12권1호
    • /
    • pp.60-65
    • /
    • 2012
  • This paper presents a method for occluded object based motion estimation and tracking system in dynamic image sequences using particle filter with 3D reconstruction. A unique characteristic of this study is its ability to cope with partial occlusion based continuous motion estimation using particle filter inspired from the mirror neuron system in human brain. To update a prior knowledge about the shape or motion of objects, firstly, fundamental 3D reconstruction based occlusion tracing method is applied and object landmarks are determined. And optical flow based motion vector is estimated from the movement of the landmarks. When arbitrary partial occlusions are occurred, the continuous motion of the hidden parts of object can be estimated by particle filter with optical flow. The resistance of the resulting estimation to partial occlusions enables the more accurate detection and handling of more severe occlusions.

억새 파티클보드의 흡음성능과 휨강도성능 (Sound Absorption Capability and Bending Strength of Miscanthus Particle Based Board)

  • 강춘원;박희준;전순식
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권1호
    • /
    • pp.38-43
    • /
    • 2012
  • 억새파티클보드의 흡음재로서의 사용가능성을 파악하고자 몇 가지 목표비중의 억새파티클보드를 제작하여 전달함수법(two microphone transfer function method)으로 상용주파수대역에서 흡음성능을 측정하고 휨강도 시험으로 역학적성질을 각각 측정, 비교하여 다음과 같은 결과를 얻었다. 측정주파수범위에서 거대억새보드의 흡음률이 상용석고보드보다 높은 흡음성능을 나타내었다. 탄성계수와 휨강도는 목표비중 증가에 따라 증가하는 경향을 나타내었다. 억새보드의 흡음률은 1~2.5 Khz 범위의 주파수범위에서 50~80%의 수치를 나타내다 이후 주파수에서는 30~50%의 흡음률을 나타내었으며 비중에 따라서는 비중이 증가할수록 흡음률이 낮아지는 경향을 보였다.

Haziness Degree Evaluator를 적용한 Hazy Particle Map 기반 자동화 안개 제거 방법 (Hazy Particle Map-based Automated Fog Removal Method with Haziness Degree Evaluator Applied)

  • 심휘보;강봉순
    • 한국멀티미디어학회논문지
    • /
    • 제25권9호
    • /
    • pp.1266-1272
    • /
    • 2022
  • With the recent development of computer vision technology, image processing-based mechanical devices are being developed to realize autonomous driving. The camera-taken images of image processing-based machines are invisible due to scattering and absorption of light in foggy conditions. This lowers the object recognition rate and causes malfunction. The safety of the technology is very important because the malfunction of autonomous driving leads to human casualties. In order to increase the stability of the technology, it is necessary to apply an efficient haze removal algorithm to the camera. In the conventional haze removal method, since the haze removal operation is performed regardless of the haze concentration of the input image, excessive haze is removed and the quality of the resulting image is deteriorated. In this paper, we propose an automatic haze removal method that removes haze according to the haze density of the input image by applying Ngo's Haziness Degree Evaluator (HDE) to Kim's haze removal algorithm using Hazy Particle Map. The proposed haze removal method removes the haze according to the haze concentration of the input image, thereby preventing the quality degradation of the input image that does not require haze removal and solving the problem of excessive haze removal. The superiority of the proposed haze removal method is verified through qualitative and quantitative evaluation.

Magnetic Properties of the Ultrafine Co Particle Systems

  • Perov, N.;Sudarikova, N.;Bagrets, A.
    • Journal of Magnetics
    • /
    • 제8권1호
    • /
    • pp.7-12
    • /
    • 2003
  • The method for evaluation of the particle size distribution of fine particles from hysteresis loop measurements is Presented. The method is illustrated on the SiO$_2$-based Co nanoparticle systems. The influence of technological conditions of sample preparation onto particle size distribution is investigated.

개선된 격자기반 적합 표면입자법을 이용한 자유표면유동 수치해석 (Numerical Analysis of Free-Surface Flows Using Improved Adaptable Surface Particle Method Based on Grid System)

  • 신영섭
    • 대한조선학회논문집
    • /
    • 제58권2호
    • /
    • pp.90-96
    • /
    • 2021
  • In this study, the method of determining the state of grid points in the adaptable surface particle method based on grid system developed as a free-surface tracing method was improved. The adaptable surface particle method is a method of determining the state of the grid point according to the shape of the free-surface and obtaining the intersection of the given free-surface and grid line where the state of the grid point changes. It is difficult to determine the state of grid points in the event of rapid flow, such as collision or separation of free-surfaces, and this study suggests a method for determining the state of current grid points using the state of surrounding grid points where the state of grid point are known. A grid layer value was assigned sequentially to a grid away from the free-surface, centering on the boundary cell where the free-surface exists, to identify the connection information that the grid was separated from the free-surface, and to determine the state of the grid point sequentially from a grid away from the free-surface to a grid close to the free-surface. To verify the improved method, a numerical analysis was made on the problem of dam break in which a sudden collision of free-surface occurred and the results were compared, and the results were relatively reasonable.

Automatic Mutual Localization of Swarm Robot Using a Particle Filter

  • Lee, Yang-Weon
    • Journal of information and communication convergence engineering
    • /
    • 제10권4호
    • /
    • pp.390-395
    • /
    • 2012
  • This paper describes an implementation of automatic mutual localization of swarm robots using a particle filter. Each robot determines the location of the other robots using wireless sensors. The measured data will be used for determination of the movement method of the robot itself. It also affects the other robots' self-arrangement into formations such as circles and lines. We discuss the problem of a circle formation enclosing a target that moves. This method is the solution for enclosing an invader in a circle formation based on mutual localization of the multi-robot without infrastructure. We use trilateration, which does require knowing the value of the coordinates of the reference points. Therefore, specifying the enclosure point based on the number of robots and their relative positions in the coordinate system. A particle filter is used to improve the accuracy of the robot's location. The particle filter is operates better for mutual location of robots than any other estimation algorithms. Through the experiments, we show that the proposed scheme is stable and works well in real environments.

Hybrid parallel smooth particle hydrodynamic for probabilistic tsunami risk assessment and inland inundation

  • Sihombing, Fritz;Torbol, Marco
    • Smart Structures and Systems
    • /
    • 제23권2호
    • /
    • pp.185-194
    • /
    • 2019
  • The probabilistic tsunami risk assessment of large coastal areas is challenging because the inland propagation of a tsunami wave requires an accurate numerical model that takes into account the interaction between the ground, the infrastructures, and the wave itself. Classic mesh-based methods face many challenges in the propagation of a tsunami wave inland due to their ever-moving boundary conditions. In alternative, mesh-less based methods can be used, but they require too much computational power in the far-field. This study proposes a hybrid approach. A mesh-based method propagates the tsunami wave from the far-field to the near-field, where the influence of the sea floor is negligible, and a mesh-less based method, smooth particle hydrodynamic, propagates the wave onto the coast and inland, and takes into account the wave structure interaction. Nowadays, this can be done because the advent of general purpose GPUs made mesh-less methods computationally affordable. The method is used to simulate the inland propagation of the 2004 Indian Ocean tsunami off the coast of Indonesia.