• Title/Summary/Keyword: particle weight fraction

Search Result 42, Processing Time 0.026 seconds

Simulation of the Determination of NaCl Concentration in Concrete samples by the Neutron induced Prompt Gamma-ray Method

  • Kim, Hyeon-Soo
    • Journal of Environmental Science International
    • /
    • v.13 no.2
    • /
    • pp.175-180
    • /
    • 2004
  • A prompt gamma-ray neutron activation (PGNA) system was simulated by the Monte Carlo N-Particle transport code (MCNP-4A) to estimate the level at which the scattered photon fluence rate, the absolute efficiency of the HPGe-detector, the volume of the concrete sample and the $^{35}$ /Cl(n, ${\gamma}$) reaction rate in this sample contribute to the count rate in the NaCl concentration measurement. The n- ${\gamma}$ fluence rates at the ST-2 beam tube exit of the HANARO reactor were used as input data, and the GAMMA-X type HPGe detector was modeled to tally 1.1649 MeV ${\gamma}$ -rays emitted from the $^{35}$ Cl(n, ${\gamma}$) reaction in the concrete sample. For three cylindrical concrete samples of 13.8, 46.8 and 157.1 ㎤ volumes, respectively, the relations between the NaCl weight fractions of 0.1, 1, 2 and 5 % in each of the concrete samples and the 1.1 649 MeV pulses created in the HPGe detector model were studied. As a result, it was found that the count rate at the same NaCl concentration nearly depends on the volume of the samples in a simulated condition of the same NaCl concentration samples, and that the linearities of the NaCl concentration calibration curves were reasonable in the narrow range of the NaCl weight fraction.

Changes in milk production and blood metabolism of lactating dairy cows fed Saccharomyces cerevisiae culture fluid under heat stress

  • Lim, Dong-Hyun;Han, Man-Hye;Ki, Kwang-Seok;Kim, Tae-Il;Park, Sung-Min;Kim, Dong-Hyeon;Kim, Younghoon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.6
    • /
    • pp.1433-1442
    • /
    • 2021
  • In this study, Saccharomyces cerevisiae culture fluid (SCCF) has been added to a diet of lactating dairy cows to attempt to improve the ruminal fermentation and potentially increase the dry matter intake (DMI) and milk yield. This study was conducted to investigate the effects of SCCF on the milk yield and blood biochemistry in lactating cows during the summer. Twenty-four Holstein dairy cows were randomly assigned to one of four treatments: (1) total mixed ration (TMR-1) (Control); (2) TMR-1 supplemented with SCCF (T1); (3) TMR-2 (containing alfalfa hay) (T2); and (4) TMR-2 supplemented with SCCF (T3). SCCF (5 ml/head, 2.0×107 CFU/mL) was mixed with TMRs daily before feeding to dairy cows. The mean daily temperature-humidity index (THI) during this trial was 76.92 ± 0.51 on average and ranged from 73.04 to 81.19. For particle size distribution, TMR-2 had a lower >19 mm fraction and a higher 8-9 mm fraction than TMR-1 (p < 0.05). The type of TMR did not influence the DMI, body weight (BW), milk yield and composition, or blood metabolites. The milk yield and composition were not affected by the SCCF supplementation, but somatic cell counts were reduced by feeding SCCF (p < 0.05). Feeding SCCF significantly increased the DMI but did not affect the milk yield of dairy cows. The NEFA concentration was slightly decreased compared to that in the control and T2 groups without SCCF. Feeding a yeast culture of S. cerevisiae may improve the feed intake, milk quality and energy balance of dairy cows under heat stress.

Characteristics of Carbidization for Iron Ore Fines with a Wide Size Range (입도분포가 넓은 분철광석의 탄화특성)

  • Hwang Ho-Sun;Chung Uoo-Chang;Chung Won-Sub;Chung Won-Bae
    • Resources Recycling
    • /
    • v.12 no.5
    • /
    • pp.42-49
    • /
    • 2003
  • Characteristics of reduction and carbidization for hematite ore with a wide size range have been investigated at high temperature(590∼64$0^{\circ}C$) under $H_2$ and $H_2$-CO gas mixtures. The apparent activation energy for reduction of hematite ore with H2 gas was found to be 20 kJ/mol. The weight loss by reduction was about 28% md the weight gain by carbidization was about 5%. The measured values of weight change were compared with those calculated from equation (3) & (5) and fairly good agreement was obtained. The rate of carbidization was increased with an decrease in temperature, particle diameter and gas ratio($H_2$/ CO). The free carbon was increased with decrease in gas ratio($H_2$/ CO). The rate of carbidization was increased with mixing of $H_2$ gas but this effect was not proportional to fraction of $H_2$ gas. It was also found that the rate of carbidization was the maximum in the $H_2$ gas fraction of 0.5. It is considered that $H_2$ plays a part as a catalyst for formation of iron carbide($Fe_3$C).

Evaluation of Dry Tribological Characteristics of Hybrid Metal Matrix Composites with Temperature Rising (온도 상승에 따른 혼합금속복합재료의 건식 마찰특성 평가)

  • Wang, Yi-Qi;Afsar, Ali-Md.;Song, Jung-Il
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.10-16
    • /
    • 2010
  • $Al_2O_3$ fiber and SiC particle hybrid metal matrix composites (MMCs) were manufactured by squeeze casting method investigated for their tribological properties. The pin specimens had different ratios of fiber to particle content but their total weight fraction was constant at 20 wt. %. Tribological tests were performed with a pin-on-disk friction and wear tester. The investigation of the dry tribological characteristics of hybrid MMCs were carried out at room temperature and elevated temperature of$100^{\circ}C$ and$150^{\circ}C$. The morphologies of worn surfaces were examined by scanning electron microscope (SEM) to observe tribological characteristics and investigate wear behavior. The results revealed that the wear resistance improved with the content of SiCp increased of the planar random (PR) MMCs at room temperature. At the elevated temperature, it revealed that the wear resistance of normal (N) MMCs was superior to that of the PR-MMCs due to PR-fibers were easily pulled out holistically from the worn surface. Meanwhile, the coefficient of friction decreased with the temperature increasing.

Synthesis and Morphology Control of Rod Shaped Potassium Hexatitanate (봉상형 육티탄산칼륨(K2Ti6O13) 제조 및 형상제어)

  • Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.14 no.4
    • /
    • pp.145-151
    • /
    • 2018
  • Rod shaped Potassium hexatitanate ($K_2Ti_6O_{13}$) was synthesized from colloidal mixture of $TiO_2$, KOH and graphene oxide (GO) by aerosol spray drying and post heat treatment. Firstly, $TiO_2-KOH-GO$ composites were fabricated by aerosol spray drying in argon atmosphere. The composites were then calcined to form a rod shaped morphology of potassium titanate (KTO) in the presence of graphene at $900^{\circ}C$ for 3 h in argon atmosphere. Finally, the rod shaped KTO was obtained after removal of graphene (GR) at $800^{\circ}C$ and 3 h in air atmosphere. Characterization of the synthesized $K_2Ti_6O_{13}$ was carried out using the XRD, BET and FE-SEM. The length and diameter of the synthesized $K_2Ti_6O_{13}$ could be controlled by weight fraction of GO in the aerosol precursor. The length of $K_2Ti_6O_{13}$ rod increased with decreasing its diameter as GO concentration increased. The aspect ratio of the synthesized $K_2Ti_6O_{13}$ rod was controlled from 5 to 13.

Generation and Physico-Chemical Characteristics of Municipal Solid Wastes generated in Chunchon for Sanitary Management (춘천시 생활쓰레기의 위생관리를 위한 배출 및 이·화학적 특성)

  • Rim, Jay-Myoung;Kang, Sung-Hwan;Han, Dong-Joon;Kim, Byeoung-Ug
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.37-42
    • /
    • 1997
  • Generation and physico-chemical characteristics of municipal solid wastes are very important for sanitary management. However, that has not been investigated so far especially in chunchon. And so, we tried to examine many things in detail. It was resulted that density was $90{\sim}94kg/m^3$ in school and office zone and $290{\sim}298kg/m^3$ in apartment and market place. The compositional weight fraction was food, 40~54%, paper, 14~18%, vinyl and prastic, 14~20% in house zone and market place and paper, 42~70% in school and office zone. Moisture was estimated to be 54~57% in independent house zone, apartment and market place and 11~23% in school and office zone. And three composition was water content, 44.1%, incineration particle, 11.2%, volatile parts, 44.7% in respectively. That is because of seasonal effects and regional chracteristics. In the results of chemical composition and caloric value analysis, carbon(C) was 80% in vinyl and plastic and oxygen(O) was 54.4% in paper.

  • PDF

Synthesis of FDR-SPC Resin and PIV Measurement for Frictional Drag-reduction (마찰저항 저감을 위한 고분자 수지 합성 및 PIV 유동장 계측)

  • Chung, Sungwoo;Kim, Eunyoung;Chun, Ho Hwan;Park, Hyun;Lee, Inwon
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.1
    • /
    • pp.49-53
    • /
    • 2014
  • In this study, a novel FDR-SPC is first synthesized in this study. The drag reducing functional radical such as PEGMA (Poly(ethylene) glycol methacrylate) has been utilized to participate in the synthesis process of the SPC. The types of the baseline SPC monomers, the molecular weight and the mole fraction of PEGMA were varied in the synthesis process. The resulting SPCs were coated to the substrate plates for the subsequent hydrodynamic test for skin friction measurement. In a low-Reynolds number flow measurement using PIV (Particle Image Velocimeter), a significant reduction in Reynolds stress was observed in a range of specimen, with the maximum drag reduction being 15.9% relative to the smooth surface.

A study on vibration characteristics and tuning of smart cantilevered beams featuring an electo-rheological fulid

  • Park, S.B.;Cheong, C.C.;Suh, M.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.134-141
    • /
    • 1993
  • Electro-Rheological(ER) fluids undergo a phase-change when subjected to an external electic field, and this phase-change typically manifests itself as a many-order-of-magnitude change in the rheological behavior. This phenomenon permits the global stiffness and energy- dissipation properties of the beam structures to be tuned in order to synthesize the desired vibration characteristics. This paper reports on a proof-of-concept experimental investigation focussed on evaluation the vibration properties of hollow cantilevered beams filled with an ER fluid. and consequently deriving an empirical model for predicting field-dependent vibration characteristics. A hydrous-based ER fluid consisting of corn starch and silicone oil is employed. The beams are considered to be uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Natural frequency, damping ratio and elastic modulus are evaluated with respect to the electric field and compared among three different beams: two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Transient and forced vibration responses are examined in time domain to demonstrate the validity of the proposed empirical model and to evaluate the feasibility of using the ERfluid as an actuator in a closed-loop control system.

  • PDF

Vibration Characteristics and Control of Smart Cantilever Beams Containing an Electro-Rheological Fluid An Experimental Investigation (전기 유동유체를 함유하는 지능외팔보의 진동특성 및 제어 실험적 고찰)

  • Choi, Seung-Bok;Park, Yong-Kun;Suh, Moon-Suk
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1649-1657
    • /
    • 1993
  • This paper reports on a proof-of-concept experimental investigation focused on evaluating the vibration characteristics and control of smart hollow cantilever beams filled with an electro-rheological(ER) fluid. The beams are considered to be of uniform viscoelastic materials and modelled as a viscously-damped harmonic oscillator. Electric field-dependent natural frequencies, loss factors and complex moduli are evaluated and compared among three different beams : two types of different volume fraction of ER fluid and one type of different particle concentration of ER fluid by weight. Modal characteristics of the beams are observed in both the absence and the presence of electric potentials. It is also shown that by constructing active control algorithm the removal of structural resonances and the suppression of tip deflection are obtained. This result provides the feasiblility of ER fluids as an active vibration control element.

Mesoporous Carbon Electrodes for Capacitive Deionization (축전식 탈염 공정을 위한 메조포러스 탄소 전극)

  • Lee, Dong-Ju;Park, Jin-Soo
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.1
    • /
    • pp.57-64
    • /
    • 2014
  • Carbon electrodes for capacitive deionization were fabricated through mixing two different carbon powders (activated carbon powder, carbon black) with different particle sizes to investigate physical or electrochemical properties and finally desalination performances of the electrodes with various compositions of two carbon powders in weight and were compared with the electrode consisting of activated carbon. As a result, the electrode structure became more packed as increasing the amount of carbon black and resulted in 10% increase in mesopore fraction. The specific capacitance obtained from cyclic voltammograms of various electrodes showed that the electrode containing carbon black only had 107.4 F/g, while the specific capacitance of the electrode having more amount of carbon black increased and was higher than the one having no carbon black. The results of desalination runs in a capacitive deionization cell exhibited that the electrode having the highest amount of carbon black (1 wt%) in this study had the highest desalting efficiency, and no significant pH variation was observed during the runs. It was analyzed using accumulated charge that the fraction of non-Faraday current increased as the amount of carbon black increased in the electrodes. It can be concluded that the addition of carbon black changed the electrode structure resulting in an increase in the fraction of mesopore and finally enhanced the desalting efficiency by decreasing Faraday current.