Browse > Article
http://dx.doi.org/10.11629/jpaar.2018.14.4.145

Synthesis and Morphology Control of Rod Shaped Potassium Hexatitanate  

Lee, Chongmin (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources)
Chang, Hankwon (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources)
Jang, Hee Dong (Resources Utilization Research Center, Korea Institute of Geoscience and Mineral Resources)
Publication Information
Particle and aerosol research / v.14, no.4, 2018 , pp. 145-151 More about this Journal
Abstract
Rod shaped Potassium hexatitanate ($K_2Ti_6O_{13}$) was synthesized from colloidal mixture of $TiO_2$, KOH and graphene oxide (GO) by aerosol spray drying and post heat treatment. Firstly, $TiO_2-KOH-GO$ composites were fabricated by aerosol spray drying in argon atmosphere. The composites were then calcined to form a rod shaped morphology of potassium titanate (KTO) in the presence of graphene at $900^{\circ}C$ for 3 h in argon atmosphere. Finally, the rod shaped KTO was obtained after removal of graphene (GR) at $800^{\circ}C$ and 3 h in air atmosphere. Characterization of the synthesized $K_2Ti_6O_{13}$ was carried out using the XRD, BET and FE-SEM. The length and diameter of the synthesized $K_2Ti_6O_{13}$ could be controlled by weight fraction of GO in the aerosol precursor. The length of $K_2Ti_6O_{13}$ rod increased with decreasing its diameter as GO concentration increased. The aspect ratio of the synthesized $K_2Ti_6O_{13}$ rod was controlled from 5 to 13.
Keywords
aerosol spray drying; potassium hexatitanate; nanorods;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cao, Y., Zhu, K. J., Wu, Q. L., Gu, Q. L., and Qiu, J. H. (2014). Hydrothermally synthesized barium titanate nanostructures from $K_2Ti_4O_9$ precursors, morphology evolution and its growth mechanism, Materials Research Bulletin, 57, 162-169.   DOI
2 Choy, J. H., Han, Y. S., and Song, S. W. (1993). Flux melting route to 2-and 3-dimensional fibrous potassium titanates, $K_2Ti_2nO_{4n+1}$ (n = 2 and 3), Journal of the Korean Chemical Society, 37, 765.
3 Endo, T., Nagayama, H., Sato, T., and Shimada, M. (1986). Crystal-growth of potassium titanates in the system $K_2O-Fe_2O_3-TiO_2$, Journal of Crystal Growth, 78, 423-430.   DOI
4 Gorokhovsky, A. V., Escalante-Garcia, J. I., Sanchez-Monjaras, T., and Gutierrez-Chavarria, C. A. (2004). Synthesis of potassium polytitanate precursors by treatment of $TiO_2$ with molten mixtures of $KNO_3$ and KOH, Journal of the European Ceramic Society, 24, 3541-3546.   DOI
5 Kang, D. G., and Song, J. T. (1995). Synthesis of potassium titanate by wet process, Journal of the Korean Crystal Growth and Crystal Technology, 5, 278-283.
6 Lee, C., Chang, H., and Jang, H. D. (2017). Eco-friendly synthesis of rod-like potassium hexatitanate particles, Particle and Aerosol Research, 115, 331-337.
7 Park, J. (2010). Photocatalytic activity of hydroxyapatite-precipitated potassium titanate whiskers, Journal of Alloys and Compounds, 492, 57-60.   DOI
8 Liu, Y. M., Qi, T., and Zhang, Y. (2006). A novel way to synthesize potassium titanates, Materials Letters, 60, 203-205.   DOI
9 Luo, R. Y., Ni, Y. F., Li, J. S., Yang, C. L., and Wang, S. B. (2011). The mechanical and thermal insulating properties of resin-derived carbon foams reinforced by $K_2Ti_6O_{13}$ whiskers, Materials Science and Engineering: A, 528, 2023-2027.   DOI
10 Meng, X. D., Wang, D. Z., Liu, J. H., Lin, B. X., and Fu, Z. X. (2006). Effects of titania different phases on the microstructure and properties of $K_2Ti_6O_{13}$ nanowires, Solid State Communications, 137, 146-149.   DOI
11 Lee, J. K., Lee, K. H., and Kim, H. (1996). Microstructural evolution of potassium titanate whiskers during the synthesis by the calcination and slow-cooling method, Journal of Materials Science, 31, 5493-5498.   DOI
12 Bao, N. Z., Feng, X., Lu, X. H., Shen, L. M., and Yanagisawa, K. (2004). Low-temperature controllable calcination syntheses of potassium dititanate, AIChE Journal, 50, 1568-1577.   DOI
13 Bao, N. Z., Shen, L. M., Feng, X., and Lu, X. H. (2004). High quality and yield in potassium titanate whiskers synthesized by calcination from hydrous titania, Journal of the American Ceramic Society, 87, 326-330.   DOI
14 Shen, L. M., Bao, N. Z., Zheng, Y. Q., Gupta, A., An, T. C., and Yanagisawa, K. (2008). Hydrothermal splitting of titanate fibers to single-crystalline $TiO_2$ nanostructures with controllable crystalline phase, morphology, microstructure, and photocatalytic Activity, The Journal of Physical Chemistry C, 112, 8809-8818.   DOI
15 Wang, Q. H., Li, Y. W., Luo, M., Sang, S. B., Zhu, T. B., and Zhao, L. (2014). Strengthening mechanism of graphene oxide nanosheets for $Al_2O_3$-C refractories, Ceramics International, 40, 163-172.   DOI
16 Takaya, S., Lu, Y., Guan, S., Miyazawa, K., Yoshida, H., and Asanuma, H. (2015). Fabrication of the photocatalyst thin films of nano-structured potassium titanate by molten salt treatment and its photocatalytic activity, Surface and Coatings Technology, 275, 260-263.   DOI
17 Wang, Q., Guo, Q. J., Wang, H., and Li, B. (2015). Molten salt synthesis of crystalline photocatalytic potassium octatitanate whiskers from KCl Melt, Materials Letters, 155, 38-40.   DOI
18 Wang, Q., Guo, Z. H., and Chung, J. S. (2009). Formation and structural characterization of potassium titanates and the potassium ion exchange property, Materials Research Bulletin, 44, 1973-1977.   DOI
19 Zhang, X. K., Tang, S. L., Zhai, L., Yu, J. Y., Shi, Y. G., and Du, Y. W. (2009). A simple molten salt method to synthesize single-crystalline potassium titanate nanobelts, Materials Letters, 63, 887-889.   DOI
20 Xu, L. Q., and Cheng, L. (2010). Environmentally friendly growth of single-crystalline $K_2Ti_6O_{13}$ nanoribbons from KCl flux, Materials Characterization, 61, 245-248.   DOI