DOI QR코드

DOI QR Code

Mesoporous Carbon Electrodes for Capacitive Deionization

축전식 탈염 공정을 위한 메조포러스 탄소 전극

  • Lee, Dong-Ju (Department of Environmental Engineering, College of Engineering, Sangmyung University) ;
  • Park, Jin-Soo (Department of Environmental Engineering, College of Engineering, Sangmyung University)
  • Received : 2014.01.09
  • Accepted : 2014.01.27
  • Published : 2014.02.28

Abstract

Carbon electrodes for capacitive deionization were fabricated through mixing two different carbon powders (activated carbon powder, carbon black) with different particle sizes to investigate physical or electrochemical properties and finally desalination performances of the electrodes with various compositions of two carbon powders in weight and were compared with the electrode consisting of activated carbon. As a result, the electrode structure became more packed as increasing the amount of carbon black and resulted in 10% increase in mesopore fraction. The specific capacitance obtained from cyclic voltammograms of various electrodes showed that the electrode containing carbon black only had 107.4 F/g, while the specific capacitance of the electrode having more amount of carbon black increased and was higher than the one having no carbon black. The results of desalination runs in a capacitive deionization cell exhibited that the electrode having the highest amount of carbon black (1 wt%) in this study had the highest desalting efficiency, and no significant pH variation was observed during the runs. It was analyzed using accumulated charge that the fraction of non-Faraday current increased as the amount of carbon black increased in the electrodes. It can be concluded that the addition of carbon black changed the electrode structure resulting in an increase in the fraction of mesopore and finally enhanced the desalting efficiency by decreasing Faraday current.

다공성의 활성탄소와 상대적으로 입자크기가 더 작은 carbon black을 여러 비율로 혼합하여 다양한 적층배열 구조를 갖는 축전식 탈염용 전극을 제조하였고 활성탄소만 존재하는 전극과 비교 분석하였다. 연구 결과 carbon black의 양이 증가할수록 탄소체의 배열 구조가 조밀해지는 것을 관찰하였고, mesopore가 약 10% 증가하는 것으로 나타났다. 순환전압전류법을 이용하여 축전용량을 살펴보았을 때 carbon black만으로는 이온흡착에 대한 영향이 거의 없지만 활성탄소체와 혼합하여 carbon black의 양이 증가할수록 비축전용량 역시 증가하는 것을 관찰하였다. 최종적으로 셀에 전극을 채용하여 탈염실험을 수행한 결과, carbon black의 양이 가장 많이 함유된 전극의 탈염 성능이 가장 우수하였고, pH의 변화의 폭이 가장 좁았다. 또한, 축전된 전하의 분석을 통해 비페러데이 전류의 비율이 증가하는 것으로 나타나 페러데이 반응에 대한 영향이 감소하는 것을 관찰하였다. 이는 carbon black의 첨가로 전극의 적층배열 구조가 변형함으로써 mesopore의 비율이 증가해 페러데이 반응에 의한 영향이 감소하였고, 탈염 성능 역시 증가하는 것을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 상명대학교

References

  1. M. A. Anderson, A. L. Cudero, J. Palma, "Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?", Electrochim. Acta, 55, 3845 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
  2. M. Mossad, L. Zou, "A study of the capacitive deionisation performance under various operational conditions", J. Hazard. Mater., 213, 491 (2012).
  3. Y. Oren, "Capacitive deionization (CDI) for desalination and water treatment - past, present and future (a review)", Desalination, 228, 10 (2008). https://doi.org/10.1016/j.desal.2007.08.005
  4. J.-H. Yeo, J.-H. Choi, "Enhancement of selective removal of nitrate ions from a mixture of anions using a carbon electrode coated with ion-exchange resin powder" Appl. Chem. Eng., 24, 49 (2013).
  5. T. J. Welgemoed, C. F. Schutte, "Capacitive Deionization TechnologyTM: An alternative desalination solution", Desalination, 183, 327 (2005). https://doi.org/10.1016/j.desal.2005.02.054
  6. Y.-J. Kim, J.-H. Choi, "Selective removal of calcium ions from a mixed solution using membrane capacitive deionization system", Appl. Chem. Eng., 23, 474 (2012).
  7. B.-R. Lee, I.-J. Jeong, S.-G. Park, "Effects of N & P Treatment Based on Liquid Organic Materials for Capacitive Deionization(CDI)", J. Korean Electrochem. Soc., 16, 124 (2013). https://doi.org/10.5229/JKES.2013.16.3.123
  8. D. R. Merrill, M. Bikson, J. G. R. Jefferys, "Electrical stimulation of excitable tissue: design of efficacious and safe protocols", Journal of Neuroscience Methods, 141, 171 (2005). https://doi.org/10.1016/j.jneumeth.2004.10.020
  9. C.-M. Park, J.-H. Choi, "Fabrication and electrochemical characterization of ion-selective composite carbon electrode coated with sulfonated poly(ether ether ketone)", Appl. Chem. Eng., 24, 247 (2013).
  10. K.-L. Yang, T.-Y. Ying, S. Yiacoumi, C. Tsouris, E. S. Vittoratos, "Electrosorption of Ions from Aqueous Solutions by Carbon Aerogel: An Electrical Double-Layer Model", Langmuir, 17, 1961 (2001). https://doi.org/10.1021/la001527s
  11. A. W. Adamsom, Physical Chemistry of Surfaces, 5th ed., John Wiley (1990).
  12. J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala, J. F. Poco, "Capacitive Deionization of NaCl and NaNO3 Solutions with Carbon Aerogel Electrodes", J. Electrochem. Soc., 143, 159 (1996). https://doi.org/10.1149/1.1836402
  13. J. Farmer, Tracy and Calif., U. S. Patent No. 5, 425, 858 (1995).
  14. C.-T. Hsieh, H. Teng, "Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics", Carbon, 40, 667 (2002). https://doi.org/10.1016/S0008-6223(01)00182-8
  15. J.-Y. Choi, J.-H. Choi, "A carbon electrode fabricated using a poly(vinylidene fluoride) binder controlled the Faradaic reaction of carbon powder", J. Ind. Eng. Chem., 16, 401 (2010). https://doi.org/10.1016/j.jiec.2009.08.005
  16. J.-Y. Lee, S.-J. Seo, J.-W. Park, S.-H. Moon, "A Study on the Cell Structure for Capacitive Deionization System" Korean Chem. Eng. Res., 48, 791 (2010).
  17. R. Zhao, O. Satpradit, H. H. M. Rijnaarts, P. M. Biesheuvel, A. van der Wal, "Optimization of salt adsorption rate in membrane capacitive deionization", Water Res., 47, 1941 (2013). https://doi.org/10.1016/j.watres.2013.01.025
  18. J.-W. Lee, H.-I. Kim, H.-J. Kim, H.-S. Shin, J.-S. Kim, B.-I. Jeong, S.-G. Park, "Desalination Effects of Capacitive Deionization Process Using Activated Carbon Composite Electrodes", J. Korean Electrochem. Soc., 12, 287 (2009). https://doi.org/10.5229/JKES.2009.12.3.287
  19. S. Shiraishi, H. Kurihara, H. Tsubota, A. Oya, Y. Soned, Y. Yamada, "Electric Double Layer Capacitance of Highly Porous Carbon Derived from Lithium Metal and Polytetrafluoroethylene", Electrochemical and Solid-State Letter, 4, A5 (2001). https://doi.org/10.1149/1.1344276
  20. H. Shi, "Conductivities and ion association of quaternary ammonium tetrafluoroborates in propylene carbonate", Electrochim. Acta, 39, 2083 (1994). https://doi.org/10.1016/0013-4686(94)85092-5
  21. M. Mullier and B. Kastening, "The double layer of activated carbon electrodes : Part 1. The contribution of ions in the pores", J. Electroanal. Chem., 374, 149 (1994). https://doi.org/10.1016/0022-0728(94)03372-2
  22. S.-J. Seo, H. Jeon, J.-K. Lee, G.-Y. Kim, D. Park, H. Nojima, J.-Y. Lee, S.-H. Moon, "Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications", Water Res., 44, 2267 (2010). https://doi.org/10.1016/j.watres.2009.10.020
  23. B.-H. Park, J.-H. Choi, "Electrochemical Properties of Porous Carbon Electrode as a Function of Internal Electrolyte Concentration", J. Korean Ind. Eng. Chem., 20, 700 (2009).
  24. T.-Y. Ying, K.-L. Yang, S. Yiacoumi, C. Tsouris, "Electrosorption of Ions from Aqueous Solutions by Nanostructured Carbon Aerogel", J. Colloid and Interface Sci., 250, 18 (2002). https://doi.org/10.1006/jcis.2002.8314
  25. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, Z. Sun, "Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes", Water Res., 42, 4923 (2008). https://doi.org/10.1016/j.watres.2008.09.026
  26. B. Jia, L. Zou, "Graphene nanosheets reduced by a multistep process as high-performance electrode material for capacitive deionisation", Carbon, 50, 2315 (2012). https://doi.org/10.1016/j.carbon.2012.01.051
  27. S. Nadakatti, M. Tendulkar, M. Kadam, "Use of mesoporous conductive carbon black to enhance performance of activated carbon electrodes in capacitive deionization technology", Desalination, 268, 182 (2011). https://doi.org/10.1016/j.desal.2010.10.020
  28. L. Zou, L. Li, H. Song, G. Morris, "Using mesoporous carbon electrodes for brackish water desalination", Water Res., 42, 2340 (2008). https://doi.org/10.1016/j.watres.2007.12.022
  29. K.-L. Yang, S. Yiacoumi, C. Tsouris, "Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry", J. Electroanal. Chem., 540, 159 (2003). https://doi.org/10.1016/S0022-0728(02)01308-6

Cited by

  1. Carbon Electrodes in Capacitive Deionization Process vol.25, pp.4, 2014, https://doi.org/10.14478/ace.2014.1080
  2. Application of Capacitive Deionization Packed Ion Exchange Resins in Two Flow Channels vol.18, pp.1, 2015, https://doi.org/10.5229/JKES.2015.18.1.24