DOI QR코드

DOI QR Code

Evaluation of Dry Tribological Characteristics of Hybrid Metal Matrix Composites with Temperature Rising

온도 상승에 따른 혼합금속복합재료의 건식 마찰특성 평가

  • Wang, Yi-Qi (Dept. Mechanical Eng., Changwon National University) ;
  • Afsar, Ali-Md. (Dept. Mechanical Eng., Changwon National University) ;
  • Song, Jung-Il (Dept. Mechanical Eng., Changwon National University)
  • Published : 2010.04.30

Abstract

$Al_2O_3$ fiber and SiC particle hybrid metal matrix composites (MMCs) were manufactured by squeeze casting method investigated for their tribological properties. The pin specimens had different ratios of fiber to particle content but their total weight fraction was constant at 20 wt. %. Tribological tests were performed with a pin-on-disk friction and wear tester. The investigation of the dry tribological characteristics of hybrid MMCs were carried out at room temperature and elevated temperature of$100^{\circ}C$ and$150^{\circ}C$. The morphologies of worn surfaces were examined by scanning electron microscope (SEM) to observe tribological characteristics and investigate wear behavior. The results revealed that the wear resistance improved with the content of SiCp increased of the planar random (PR) MMCs at room temperature. At the elevated temperature, it revealed that the wear resistance of normal (N) MMCs was superior to that of the PR-MMCs due to PR-fibers were easily pulled out holistically from the worn surface. Meanwhile, the coefficient of friction decreased with the temperature increasing.

가압주조법으로 제조된 알루미나 섬유와 SiC 입자 혼합금속복합재료의 마찰특성을 조사하였다. 핀 형태의 마모 시험편은 전체 부피비 20%에 섬유와 입자의 서로 다른 비를 갖고 있다. 혼합금속복합재료의 윤활마모시험은 핀과 디스크 타입의 마모시험기를 사용하여 수행되었는데, 상온과 고온 $100^{\circ}C$$150^{\circ}C$.에서의 건식마찰특성을 각각 수행하였다. 마모면의 미시분석은 주사전자현미경(SEM)으로 조사하여 마찰특성과 마모거동을 분석하였다. 시험 결과 마모저항은 상온에서는 섬유와 같은 방향인 (PR) 방향에서는 SiC입자의 증가에 따라 향상되었다. 고온에서는 섬유와 수직한 방향(N)의 마모특성은 PR방향의 섬유가 마모면으로 전체적으로 쉽게 뽑히기 때문에 PR방향의 금속보합재료의 마모특성보다 우수하였다. 한편 마찰계수는 온도증가에 따라 감소하였다.

Keywords

References

  1. Rohatgi P., "Cast aluminium-matrix composites for automotive applications," JOM, Vol. 431991;:10-15.
  2. Fu G.F., and Jiang L., "Fabrication and properties of Al matrix composites strengthened by in situ alumina particulates," JOM, Vol. 13, 2006, pp. 263-266.
  3. Sahin Y., "Wear behavior of planar-random fibre-reinforced metal matrix composites," Wear, Vol. 223, 1998, pp. 173-183. https://doi.org/10.1016/S0043-1648(98)00315-9
  4. Kato, K., "Wearin relation to friction-a review," Wear. Vol. 241, 2000, pp. 151-157. https://doi.org/10.1016/S0043-1648(00)00382-3
  5. Sahin Y., "Wear behavior of aluminium alloy and its composites reinforced by SiC particles using statistical analysis," Mater. Des., Vol.223, 2003, pp. 173-183.
  6. Natarajan N., Vijayarangan S., and Rajendran I., "Wear behaviour of A356/25SiCp aluminium matrix composites sliding against automobile friction material," Wear, Vol. 261, 2006, pp. 812-822. https://doi.org/10.1016/j.wear.2006.01.011
  7. Zhang S.Y., and Wang F.P., "Comparison of friction and wear performances of brake material dry sliding against two aluminum matrix composites reinforced with different SiC particles," J. Mater. Process. Technol. Vol. 182, 2007, pp. 122-127. https://doi.org/10.1016/j.jmatprotec.2006.07.018
  8. Rodriguez J., Poza P., Garrido M.A., and Rico A., "Dry sliding wear behaviour of aluminium-lithium alloys reinforced with SiC particles," Wear, Vol. 262, 2007, pp. 292-300. https://doi.org/10.1016/j.wear.2006.05.006
  9. Unlu B.S., "Investigation of tribological and mechanical properties ${Al_2O_3}$-SiC reinforced AI composites manufactured by casting or P/M method," Mater. Des., Vol. 29, 2008, pp. 2002-2008. https://doi.org/10.1016/j.matdes.2008.04.014
  10. Yilmaz S.O., "Comparison on abrasive wear of SiCrFe, CrFeC and ${Al_2O_3}$ reinforced Al2024 MMCs," Tribol. Int., Vol.40, 2007, pp. 441-452. https://doi.org/10.1016/j.triboint.2006.04.008
  11. Romanova V.A., Balokhonov R.R., and Schmauder S., "The influence of the reinforcing particle shape and interface strength on the fracture behavior of a metal matrix composite," Acta Mater., Vol. 57, 2009, pp. 97-107. https://doi.org/10.1016/j.actamat.2008.08.046
  12. Rosenberger M.R., Forlerer E., and Schvezov C.E., "Wear behavior of AA1060 reinforced with alumina under different loads," Wear, Vol. 266, 2009, pp. 356-359. https://doi.org/10.1016/j.wear.2008.06.007
  13. Bai M.W., Xue Q.J., Liu W.M., and Yang S.R., "Wear mechanisms of ${K_2Ti_4O_9}$ whiskers reinforced AI---20Si aluminum matrix composites with lubrication of water and tetradecane," Wear, Vol. 199, 1996, pp. 222-227. https://doi.org/10.1016/0043-1648(96)06960-8
  14. Fu, H. H., Han, K. S., and Song, J. I., "Wear properties of Saffil/AI, Saffil/${Al_2O_3}$/AI and SaffiI/SiC/Al hybrid metal matrix composites," Wear, Vol. 256, No. 7-8, 2004, pp. 705-713. https://doi.org/10.1016/S0043-1648(03)00460-5
  15. Du Z.M., and Li J.P., J. "Mater. Process. Study of the preparation of ${Al_2O_3_s_fSiC_p}$/AI composites and their wearresisting properties," Technol. Vol. 151, 2004, pp. 298-301.