• 제목/요약/키워드: particle size distributions

검색결과 307건 처리시간 0.022초

Particle size distributions and concentrations above radiators in indoor environments: Exploratory results from Xi'an, China

  • Chen, Xi;Li, Angui
    • Environmental Engineering Research
    • /
    • 제20권3호
    • /
    • pp.237-245
    • /
    • 2015
  • Particulate matter in indoor environments has caused public concerns in recent years. The objective of this research is to explore the influence of radiators on particle size distributions and concentrations. The particle size distributions as well as concentrations above radiators and in the adjacent indoor air are monitored in forty-two indoor environments in Xi'an, China. The temperatures, relative humidity and air velocities are also measured. The particle size distributions above radiators at ten locations are analyzed. The results show that the functional difference of indoor environments has little impact on the particle size distributions above radiators. Then the effects of the environmental parameters (particle concentrations in the adjacent indoor air, temperatures, relative humidities and air velocities) on particle concentrations above radiators are assessed by applying multiple linear regression analysis. Three multiple linear regression models are established to predict the concentrations of $PM_{10}$, $PM_{2.5}$ and $PM_1$ above radiators.

Mapping Particle Size Distributions into Predictions of Properties for Powder Metal Compacts

  • German, Randall M.
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.704-705
    • /
    • 2006
  • Discrete element analysis is used to map various log-normal particle size distributions into measures of the in-sphere pore size distribution. Combinations evaluated range from monosized spheres to include bimodal mixtures and various log-normal distributions. The latter proves most useful in providing a mapping of one distribution into the other (knowing the particle size distribution we want to predict the pore size distribution). Such metrics show predictions where the presence of large pores is anticipated that need to be avoided to ensure high sintered properties.

  • PDF

Distributions of Mean Particle Size and Age on the Lunar Surface

  • Jung, Min-Sup;Kim, Sung-Soo S.;Min, Kyoung-Wook
    • 천문학회보
    • /
    • 제36권2호
    • /
    • pp.103.2-103.2
    • /
    • 2011
  • We measure the degree of polarization of the lunar regolith to map the distributions of the age and the particle size. We use a 12cm refracting telescope with a 2k-square pixel color CCD (R band) and a polarization filter. The angular resolution obtained is 3.02 km/pixel. Our goal is to obtain a map of the lunar particle size distribution on the lunar regolith and then that of the age distribution. Polarization of the light scattered by lunar surface contains information on their mean particle size. The mean particle size of the lunar surface has been decreased by continued micro-meteoroid impact over a long period. One can estimate the age of the lunar surface if the mean particle size is known. Particle sizes can be measured through observations of polarization because the mean particle size is related to the maximum polarization and albedo. The age and the particle size of the lunar regolith can give vital information for the future lunar exploration.

  • PDF

겨울철 도시지역 대기 수용성 에어로졸 입자의 크기 분포를 결정하는 주요 인자 (Major factors determining the size distributions of atmospheric water-soluble aerosol particles at an urban site during winter)

  • 박승식
    • 한국입자에어로졸학회지
    • /
    • 제17권3호
    • /
    • pp.43-54
    • /
    • 2021
  • Size distributions of atmospheric particulate matter (PM) and its water-soluble organic and inorganic components were measured between January and February 2021 at an urban site in Gwangju in order to identify the major factors that determine their size distributions. Their size distributions during the study period were mainly divided into two groups. In the first group, PM, NO3-, SO42-, NH4+ and water-soluble organic carbon (WSOC) exhibited bi-modal size distributions with a dominant condensation mode at a particle size of 0.32 ㎛. This group was dominated by local production of secondary water-soluble components under atmospheric stagnation and low relative humidity (RH) conditions, rather than long-range transportation of aerosol particles from China. On the other hand, in the second group, they showed tri-modal size distributions with a very pronounced droplet mode at a diameter of 1.0 ㎛. These size distributions were attributable to the local generation and accumulation of secondary aerosol particles under atmospheric conditions such as atmospheric stagnation and high RH, and an increase in the influx of atmospheric aerosol particles by long-distance transportation abroad. Contributions of droplet mode NO3-, SO42-, NH4+ and WSOC to fine particles in the second group were significantly higher than those in the first group period. However, their condensation mode contributions were about two-fold higher in the first group than in the second group. The significant difference in the size distribution of the accumulation mode of the WSOC and secondary ionic components between the two groups was due to the influx of aerosol particles with a long residence time by long-distance transport from China and local weather conditions (e.g., RH).

Model for simulating the effects of particle size distribution on the hydration process of cement

  • Chen, Changjiu;An, Xuehui
    • Computers and Concrete
    • /
    • 제9권3호
    • /
    • pp.179-193
    • /
    • 2012
  • The hydration of cement contributes to the performance characteristics of concrete, such as strength and durability. In order to improve the utilization efficiency of cement and its early properties, the particle size distribution (PSD) of cement varies considerably, and the effects of the particle size distribution of cement on the hydration process should be considered. In order to evaluate effects of PSD separately, experiments testing the isothermal heat generated during the hydration of cements with different particle size distributions but the same chemical composition have been carried out. The measurable hydration depth for cement hydration was proposed and deduced based on the experimental results, and a PSD hydration model was developed in this paper for simulating the effects of particle size distribution on the hydration process of cement. First, a reference hydration rate was derived from the isothermal heat generated by the hydration of ordinary Portland cement. Then, the model was extended to take into account the effect of water-to-cement ratio, hereinafter which was referred to as PSD hydration model. Finally, the PSD hydration model was applied to simulate experiments measuring the isothermal heat generated by the hydration of cement with different particle size distributions at different water-to-cement ratios. This showed that the PSD hydration model had simulated the effects of particle size distribution and water-to-cement ratio on the hydration process of cement with satisfactory accuracy.

Characteristics in Size Distributions and Morphologies of Wear Particles Depending on Types of Abrasion Testers

  • Eunji Chae;Seong Ryong Yang;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • 제58권2호
    • /
    • pp.87-94
    • /
    • 2023
  • Abrasion tests of an SBR compound were conducted using four different types of abrasion testers (cut and chip, Lambourn, DIN, and LAT100). The abrasion test results were analyzed in terms of size distributions and morphologies of the wear particles. Most wear particles were larger than 1000 ㎛. The wear particle size distributions tended to decrease as the particle size decreased. Except for the Lambourn abrasion test, the wear particles smaller than 212 ㎛ were rarely generated by the other three abrasion tests, implying that small wear particles were produced through friction by introducing talc powder. Shapes of the wear particles varied depending on the abrasion testers. The wear particles generated from the Lambourn abrasion tester had stick-like shapes. The cut and chip abrasion test showed a clear abrasion pattern, but the DIN abrasion test did not show any specific abrasion pattern. The Lambourn and LAT100 abrasion tests showed irregular abrasion patterns.

기-고 유동층에서 Gaussian 분포 입자군의 표준편차에 따른 유출 특성 (The Characteristics of Elutriation with Gaussian Particle Size Distributions in a gas-solid fluidized bed)

  • 장현태;차왕석
    • 한국산학기술학회논문지
    • /
    • 제10권11호
    • /
    • pp.3274-3279
    • /
    • 2009
  • 기-고 유동층에서 다입자경 입자의 입자분포 변화에 따른 비산유출 특성을 연구하였다. 다입자경 입자분포는 Gaussian 분포를 사용하여 실험을 수행하였다. 최소유동화속도에 대한 유속비와 Gaussian 입자분포의 표준편차에 따른 비산유출상수를 구하였으며, 이때 조업시간에 따른 압력요동의 특성치를 구하였다. 측정된 유동층의 압력요동 특성치로부터 압력요동의 표준편차, 평균압력, Power spectrum density function, 주진동수 등을 계산하였다. 입자분포군에 따라서 유출입자의 입자분포 및 압력요동 특성치는 크게 영향을 받는 것으로 나타났으며 이러한 결과로부터 압력요동 특성치로부터 유출특성의 해석이 가능함을 알 수 있었다.

Determination of the Size Distribution of Magnetite Nanoparticles from Magnetic Measurements

  • Yoon, Sung-Hyun
    • Journal of Magnetics
    • /
    • 제16권4호
    • /
    • pp.368-373
    • /
    • 2011
  • Particle size distributions in 10 nm magnetite ferrofluids are analyzed based on both dc and ac magnetic measurements. Modified log-normal distributions are used for fitting the experimental results, which allows for a proper account of the narrow distributions. The calculated average particle sizes are in good agreement with the TEM results. However the ac method gives a much narrower distribution width than that of the dc magnetization curve fit. The proposed measurements combined with the analysis methods are useful for the characterization of ferrofluids being considered for biomedical applications.

부유사 및 하상토 입도분포를 고려한 저수지 퇴사의 장기모의 (Long-Term Simulation of Reservoir Sedimentation Considering Particle-Size Distributions of Suspended Sediment and Bed Materials)

  • 김대근;신광균
    • 한국수자원학회논문집
    • /
    • 제46권1호
    • /
    • pp.87-97
    • /
    • 2013
  • 본 연구에서는 HEC-RAS의 하상변동모형을 이용하여 고농도의 유사가 중소규모의 저수지에 유입하여 삼각주를 형성하는 과정을 유사의 입도분포를 고려하여 해석하였으며, 다음과 같은 결론을 얻을 수 있었다. 먼저, 삼각주의 시공간적인 분포와 년간 저수지에 퇴적되는 입도별 퇴사량을 합리적으로 예측할 수 있었다. 또한 저수지의 특정위치에서 특정시기에 어떤 입도의 유사가 주로 퇴적되는지를 합리적으로 예측할 수 있었다. 이러한 유사의 입도분포를 고려한 모의와 분석은 수자원관련 시설물의 계획 및 유지관리에 필요한 유용한 정보를 제공해 줄 수 있을 것으로 판단된다.

이젝터-다공튜브 희석 샘플링과 ELPI를 이용한 석탄화력발전소 배출 미세먼지의 입자 크기에 따른 성분 분석 (Elemental components analysis according to the size of fine particles emitted from a coal-fired power plant using an ejector-porous tube dilution sampling and ELPI)

  • 신동호;박대훈;조윤희;김영훈;홍기정;이건희;한방우;황정호
    • 한국입자에어로졸학회지
    • /
    • 제18권3호
    • /
    • pp.69-77
    • /
    • 2022
  • In order to understand the characteristics of fine particles emitted from coal-fired power plant stacks, it is important to analyze the size distribution and components of particles. In this study, particle size distributions were measured using the ejector-porous tube dilution device and an ELPI system at a stack in a coal-fired power plant. Main elemental components of particles in each size interval were also identified through TEM-EDS analysis for the particles collected in each ELPI stage. Particle size distributions based on number and mass were analyzed with component distributions from 0.006 to 10 ㎛. The highest number concentration was about 0.01 ㎛. The main component of the particles consisted of sulfur, which indicated that sulfate aerosols were generated by gas-to-particle conversion of SO2. In a mass size distribution, a mono-modal distribution with a mode diameter of about 2 ㎛ was shown. For the components of PM1.0 (particles less than 1 ㎛), the abundance order was F > Mg > S > Ca, and however, for the components of PM10 (particles less than 10 ㎛), it was in the order of Fe > S > Ca > Mg. The elemental components by particle size were confirmed.