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1. Introduction 

 
Random and ordered packing are two very different 

structures. A random packing is constructed by a sequence 
of events that are not correlated with one another - by 
definition the assembly process involves random events. 
This results in a structure without long-range repetition. 
Generally, random structures have a lower packing density 
than attainable with ordered structures. For a one-
dimensional packing the concept is often related to parking 
automobiles along a curb, where an unmarked curb can 
have a wide variation in coverage. An ordered structure 
occurs when objects are placed systematically into periodic 
positions. In three dimensions this is how the bricks in a 
wall or atoms in a crystal structure are placed in precise 
repetitive patterns. In a two-dimensional packing, this 
corresponds to how tiles are placed to cover a floor or wall. 
In a one-dimensional packing it is simply the analog to a 
pearl necklace, where each pearl is abutted against the next.  

Formally, an ordered packing is recognized by the fact 
that each object is located by a simple mathematical 
translation of steps from every other particle. Some 
examples are shown in Figure 2.1 to illustrate the cases 
involving linear translations. Besides linear displacements, 
structures can be created by rotational translations as well 
as via mirror images.  

Although many particle packing problems are considered 
in three dimensions, there are many reasons to consider 
other levels of packing. Indeed, problems with dimensions 
greater than three have been treated in pure mathematics 
and have proven useful in designing systems for digital 
communications. At the other extreme are the one- and 
two-dimensional packings treated here prior to three-
dimensional packings. The one-dimensional parking 

problem is a useful means to understand general concepts 
in packing. Likewise, another useful conceptualization is 
the necklace problem, since bead placement on the string 
determines the coverage. Random placement of beads leads 
to an imperfect necklace.  

In a one-dimensional packing, each segment is defined in 
size by its end points, or length. The segment packing 
problem is fairly easy to solve for the ordered structure, 
where the maximum attainable coverage is 100%. Perfect 
segment alignment gives end-to-end alignment. Even if the 
segments differ in length, it is still possible to generate 
100% coverage. However, with a random placement of the 
segments, the coverage is less than complete. The most 
common problem is for monosized segments where each 
segment is the same length.  

The one-dimensional packing is determined by two 
points along the line, the distance between the two points 
being equal to the size of the segment, effectively the 
diameter of the 0-sphere. An ordered packing of segments 
can attain a fractional density ρ of 1.00; this corresponds to 
total coverage of the line. Alternatively, a random packing 
of monosized segments attains a fractional density ρ of 
approximately 0.75. There are unfilled gaps, too small to 
fill with another segment, that lower the coverage from that 
of an ordered packing. The reduction in packing efficiency 
directly results from the random fill process. 

Random packings lack the coverage attained with 
ordered packings. The maximum attainable packing density 
to decrease as the dimensionality of the problem increases, 
being 1.000 for one-dimensional, 0.9069 for two-
dimensional, and 0.7405 for three-dimensional packings. 
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Discrete element analysis is used to map various log-normal particle size distributions into measures of the in-sphere pore 
size distribution. Combinations evaluated range from monosized spheres to include bimodal mixtures and various log-
normal distributions. The latter proves most useful in providing a mapping of one distribution into the other (knowing the
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2. Key Findings 
 

Particle size distributions were input into a discrete 
element particle packing simulation. Many variants were 
explored in this research: 
 1-dimensional monosized packing of segments 
 2-dimensional monosized packing of circles 
 3-dimensional monosized packing of spheres 
 3-dimensional packing of bimodal spheres 
 3-dimensional packing of log-normal spheres  
 

Each of the packing structures was first tested for 
packing density against experimentally and analytical 
solutions. The findings were consistent with typical 
expectations; for example monosized spheres packed to a 
fractional density of 0.58 to 0.64 depending on the 
container size and shape. Normally the monosize sphere 
packing is 0.60 for loose random and 0.64 for dense 
random, large container trials. 
 

Each packing was then analyzed for the in-sphere pore 
size distribution. The in-sphere represents a fitting of an 
imaginary sphere into the void space between the particles. 
Once the void space is filled, the in-sphere size distribution 
is extracted as a measure of the pore size distribution. 
Fitting routines are used to measure the pore size 
distribution and determine the best fitting parameters. An 
image of the sectioned particles and in-sphere filled pores is 
given below.   

 
 

From such a build and fill sequence, it is possible to link 
and map the input particle size distribution with the 
resulting pore size distribution. Various log-normal input 
particle size distributions were used and various degrees of 
densification via compaction and sintering were applied to 
the packed particles. From this it was possible to realize a 
few significant findings. First, large pores form in the 
packings, often larger than the particle sizes. Second, the 
pore size distribution tends to be log-normal. Both aspects 
are evident in the pore size distribution shown below for a 
monosized sphere loose packing (cumulative fraction 
versus size d/D where d = pore diameter and D = particle 
diameter). 

 
 
In this plot the square symbols are the actual data and the 

blue line is a log-normal distribution fit to those points. 
Most significant is to realize the input was a monosized 
powder which resulted in a broad pore size distribution, 
with a few pores larger than the particles.  
 
 

3. Conclusions 
 

As the packing density increases, the median pore size 
decreases and as the width of the particle size distribution 
increases the median pore size decreases. However, the 
spread in the log-normal pore size distribution is invariant 
with respect to the input particle size. This is a most 
significant finding. With respect to mechanical properties, 
the large pores are the major causes of failure. This study 
shows that for press-sinter processing, the largest gains in 
properties would come from increasing the density and 
reducing the median particle size, with a broad dispersion 
in particle size. Small particles form pore size distributions 
with the same dispersion, but the overall mean and 
maximum pore sizes scale with particle size. A high 
content of small particles induces more sintering that 
improves properties while helping to remove detrimental 
large pores. In these systems, lower compaction pressures 
can be used, since small powders do not deform in 
compaction, since they rely on a binder for green strength. 
Compaction then is a shaping step with reduced green 
density gradients that enable more uniform sintered 
dimensions. For example, 316L stainless steel pressed and 
sintered from a 32 µm powder sintered to give 505 MPa 
tensile ultimate strength, and 65% tensile elongation. The 
sintered tensile strength from press-sinter 100 µm particles 
(with large residual pores) is 140 MPa and from injection 
molded 16 µm particles is 230 MPa. So clearly it is not the 
press-sinter route that leads to low properties, but the large 
residual pores. 




