• Title/Summary/Keyword: particle flow rate

Search Result 642, Processing Time 0.03 seconds

Study on the flow characteristics of the polymer reactors (고분자 반응기의 내부 유동 특성에 관한 연구)

  • Choi D. S.;Im Y. H.;Han S. P.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2002.05a
    • /
    • pp.134-139
    • /
    • 2002
  • This study is focused on investigating the characteristics of internal flow of the polymer reactor and its effect on the polymer quality. Four types of polymer reactor which have different kind of impeller, baffle and operation condition were calculated by CFD. Fluent 6 have been used to simulate mixing phenomena of reactor. According to the comparison of computational results and SEM photographs of polymer particle, distribution of turbulent dissipation rate greatly influences on the quality of polymer. So, distribution of turbulent dissipation rate to be important criterion to predict polymer quality.

  • PDF

The Flow Characteristics in a Vaneless Diffuser by PIV Measurements (PIV측정에 의한 깃 없는 디퓨저에서의 유동특성)

  • Yoon, Ji-In;Shin, You-Hwan;Lee, Yoon-Pyo;Kim, Kwang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.45-50
    • /
    • 2012
  • The flow characteristics in a vaneless diffuser with a backswept radial impeller have been experimentally investigated according to the variation of discharge flow rate. Particle image velocimetry(PIV) system was applied to measure velocity fields with several operating conditions and on some diffuser horizontal planes. Pressure transducers were installed on hub wall of the diffuser in order to analyze the pressure fluctuations and their corresponding velocity fields. The results show that the location of the main flow center moves from the hub to the shroud side as the flow rate decreases, and the reverse flow is locally generated on the hub side.

Numerical simulation for ultrafine SiC powder synthesis using the vapor phase reaction (기상반응을 이용한 SiC 초미분말 합성에 관한 수치모사)

  • 유용호;어경훈;송은석;이성철;소명기
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.6
    • /
    • pp.563-569
    • /
    • 1999
  • The numerical simulation method was utilized to investigate the optimal condition for synthesizing ultrafine SiC powders by using $TMS[Si(CH_3)_4]-H_2$ gaseous mixtures in the horizontal reactor. As a result of the theoretical analysis, the conversion percentage of TMS source was increased with increasing reaction temperature, however, which was decreased with increasing H$_2$flow rate. Though the SiC particles concentration synthesized was decreased with increasing the reaction temperature due to the higher collision rate in the gas phase, they were increased with increasing the H$_2$flow rate and TMS concentration. The SiC particle size showed a tendency to become larger as the reaction temperature and the initial TMS concentration were increased and smaller as the H$_2$ flow rate was increased. The variation of experimental particle size with the reaction temperature, H$_2$flow rate and TMS concentration was agreed with the theoretical results.

  • PDF

Numerical Analysis and Flow Visualization Study on Two-phase Flow Characteristics in Annular Ejector Loop (환형 이젝터 루프 내부의 이상유동특성 파악을 위한 수치해석 및 유동가시화 연구)

  • Lee, Dong-Yeop;Kim, Yoon-Kee;Kim, Hyun-Dong;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.47-53
    • /
    • 2011
  • A water driven ejector loop was designed and constructed for air absorption. The used ejector was horizontally installed in the loop and annular water jet at the throat entrained air through the circular pipe placed at the center of the ejector. Wide range of water flow rate was provided using two kinds of pumps in the loop. The tested range of water flow rate was 100${\ell}$ /min to 1,000 ${\ell}$/min. Two-phase flow inside the ejector loop was simulated by CFD analysis. Homogeneous particle model was used for void fraction prediction. Water and air flow rates and pressure drop through the ejector were automatically recorded by using the LabView based data acquisition system. Flow characteristics and air bubble velocity field downstream of the ejector were investigated by two-phase flow visualization and PIV measurement based on bubble shadow images. Overall performance of the two-phase ejector predicted by the CFD simulation agrees well with that of the experiment.

Measurement of Flow Field in a Ginseng Cleaner Model Using PIV (PIV에 의한 인삼세척기 모델 내부의 유동계측)

  • 송치성
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.139-145
    • /
    • 2001
  • The objective of experimental study is to apply simultaneous measurement by PIV(Particle Image Velocimetry) to high_speed flow characteristics within ginseng cleaner model. Three different kinds of flow rate(15. 20, 27l/min) are selected as experimental condition. Optimized cross correlation identification to obtain velocity distribution, time-mean velocity distribution, velocity, profile, kinetic energy and turbulence intensity are represented quantitatively for the deeped understanding of the flow characteristics in a ginseng cleaner model.

  • PDF

A Study on Flow Characteristics of a Ginseng Cleaner Using PIV (PIV에 의한 인삼세척기의 특성연구)

  • 송치성
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2000.05a
    • /
    • pp.140-145
    • /
    • 2000
  • The objective of experimental study is to apply simultaneous measurement by PIV(Particle Image Velocimetry) to high_speed flow characteristics within ginseng cleaner model. Three different kinds of flow rate(15.20 27ℓ/min) are selected as experimental condition. Optimized cross correlation identification to obtain velocity vectors is implemented by direct calculation of correlation coefficients. The instantaneous velocity distribution time0mean velocity distribution and velocity profile are represented quantitatively for the deeper understanding of the flow characteristics in a ginseng cleaner model.

  • PDF

Numerical prediction for the performance of a floating-type breakwater by using a two-dimensional particle method

  • Lee, Byung-Hyuk;Hwang, Sung-Chul;Nam, Jung-Woo;Park, Jong-Chun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.1
    • /
    • pp.37-45
    • /
    • 2011
  • The nonlinear free-surface motions interacting with a floating body were investigated using the Moving Particle Semi-implicit (MPS) method proposed by Koshizuka and Oka [6] for incompressible flow. In the numerical method, more realistic Lagrangian moving particles were used for solving the flow field instead of the Eulerian approach with a grid system. Therefore, the convection terms and time derivatives in the Navier-Stokes equation can be calculated more directly, without any numerical diffusion, instabilities, or topological failure. The MPS method was applied to a numerical simulation of predicting the efficiency of floating-type breakwater interacting with waves.

Effects of Screen Packing Materials an Gas Discharge Dust Containing (함진기체의 배출에 미치는 금망 충진물의 영향)

  • 홍영호;함영민
    • Journal of the Korean Society of Safety
    • /
    • v.8 no.4
    • /
    • pp.120-126
    • /
    • 1993
  • This work was carried out to investigate the effects of solid mass flow rate, mean particle diameter and mesh number of screen packing material on minimum carrying velocity, which defined as the superficial gas velocity of the upper limit of chocking phenomenon. Vertical pneumatic conveying was studied on a 4.6cm 1. D. pipe, 180cm in length. Experiments were performed in both the empty and the screen-packed pipe. It was also examined the effect of superficial gas velocity, solid mass flow, mean particle diameter, and mesh number of packing material on pressure drop. Minimum carrying velocity in screen packed-pipe was lower than that in an empty pipe. besides minimum carrying velocity was decreased with increase in mesh number of screen packing material. The pressure drop In vortical packed-pipe was Increased with superficial gas velocity, mean particle diameter, and mesh number of screen packing material.

  • PDF

Numerical Analysis of the Particle Dispersion by the Variation of the Velocity Ratio in a Mixing Layer (혼합층에서 속도비 변화에 따른 입자확산 유동해석)

  • Seo, Tae Won;Kim, Tae Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.8-14
    • /
    • 2003
  • The particle dispersion in the turbulent mixing layer has been numerically investigated to clarify the effect of the velocity ratio in the large-scale vortical structures. In this study the LES with subgrid-scale model is employed. The Lagrangian method to predict the particle motion is applied. The particles of 10, 50, 150, 200${\mu}m$ in mean diameter were loaded into the origin of the mixing layer. It is shown that the characteristics of flow and growth rate are strongly dependent on the variation of the velocity ratio. It is also shown the relationship between the Stokes number and the particle dispersion. As a result, in the case of St~1 the particle dispersion is faster than the diffustion of the flow field while in the cases of both St<<1 and St>>1 it is shown that the particle dispersion in lower than the diffusion of the flow filed.

Performance Test of 3 Port ERF Valve for Controlling Flow Rate-Direction (3 포트 ERF 밸브의 유량-방향 제어 성능 실험 -유압시스템 및 자동화 융합연구-)

  • Jang, S.C.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.92-97
    • /
    • 2012
  • In this study, ER fluids were working fluid and yield shear stress of attained dispersive ER fluids made by analyzed to adapt effectively at the practical equipment like three port ER valve. In addition, movement of ER particle was observed by using a microscope the same as the strength of electric field with Bingham characteristic. Basis material was presented to develop 3 port ER-Valve by quantitatively comparing and analyzing entrance, load and outlet flow's differences of 3 port rectangular tubes. This study, after designing and producing the 3port ER-Valve, considered the characteristic of pressure drop, outlet and load flow rate by changing the strength of electric field on ER fluids flowing between electrodes.