• Title/Summary/Keyword: particle cleaning

Search Result 176, Processing Time 0.04 seconds

Investingation of Laser Shock Wave Cleaning with Different Particle Condition (오염 입자 상태에 따른 레이저 충격파 클리닝 특성 고찰)

  • 강영재;이종명;이상호;박진구;김태훈
    • Laser Solutions
    • /
    • v.6 no.3
    • /
    • pp.29-35
    • /
    • 2003
  • In semiconductor processing, there are two types of particle contaminated onto the wafer, i.e. dry and wet state particles. In order to evaluate the cleaning performance of laser shock wave cleaning method, the removal of 1 m sized alumina particle at different particle conditions from silicon wafer has been carried out by laser-induced shock waves. It was found that the removal efficiency by laser shock cleaning was strongly dependent on the particle condition, i.e. the removal efficiency of dry alumina particle from silicon wafer was around 97% while the efficiencies of wet alumina particle in DI water and IPA are 35% and 55% respectively. From the analysis of adhesion forces between the particle and the silicon substrate, the adhesion force of the wet particle where capillary force is dominant is much larger than that of the dry particle where Van der Waals force is dominant. As a result, it is seen that the particle in wet condition is much more difficult to remove from silicon wafer than the particle in dry condition by using physical cleaning method such as laser shock cleaning.

  • PDF

Effect of PVA Brush Contamination on Post-CMP Cleaning Performance (Post-CMP Cleaning에서 PVA 브러시 오염이 세정 효율에 미치는 영향)

  • Cho, Han-Chul;Yuh, Min-Jong;Kim, Suk-Joo;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.114-118
    • /
    • 2009
  • PVA (polyvinyl alcohol) brush cleaning method is a typical cleaning method for semiconductor cleaning process especially post-CMP cleaning. PVA brush contacts with the wafer surface and abrasive particle, generating the contact rotational torque of the brush, which is the removal mechanism. The brush rotational torque can overcome theoretically the adhesion force generated between the abrasive particle and wafer by zeta potential. However, after CMP (chemical mechanical polishing) process, many particles remained on the wafer because the brush was contaminated in previous post-CMP cleaning step. The abrasive particle on the brush redeposits to the wafer. The level of the brush contamination increased according to the cleaning run time. After cleaning the brush, the level of wafer contamination dramatically decreased. Therefore, the brush cleanliness effect on the cleaning performance and it is important for the brush to be maintained clearly.

Evaluation of Particle Removal Efficiency during Jet Spray and Megasonic Cleaning for Aluminum Coated Wafers

  • Choi, Hoomi;Min, Jaewon;Kulkarni, Atul;Ahn, Youngki;Kim, Taesung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.3
    • /
    • pp.7-11
    • /
    • 2012
  • Among various wet cleaning methods, megasonic and jet spray gained their popularity in single wafer cleaning process for the efficient removal of particulate contaminants from the wafer surface. In the present study, we evaluated these two cleaning methods for particle removal efficiency (PRE) and pattern damage on the aluminum layered wafer surface. Also the effect of $CO_2$ dissolved water in jet spray cleaning is assessed by measuring PRE. It is observed that the jet spray cleaning process is more effective in terms of PRE and pattern damage compared to megasonic cleaning and the mixing of $CO_2$ in the water during jet sprays further increases the PRE. We believe that the outcome of the present study is useful for the semiconductor cleaning process engineers and researchers.

Nano-cleaning of EUV Mask Using Amphoterically Electrolyzed Ion Water (화학양면성의 전해이온수를 이용한 극자외선 마스크의 나노세정)

  • Ryoo, Kun-kul;Jung, Youn-won;Choi, In-sik;Kim, Hyung-won;Choi, Byung-sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.34-42
    • /
    • 2021
  • Recent cleaning technologies of mask in extremely ultraviolet semiconductor processes were reviewed, focused on newly developed issues such as particle size determination or hydrocarbon and tin contaminations. In detail, critical particle size was defined and proposed for mask cleaning where nanosized particles and its various shapes would result in surface atomic ratio increase vigorously. A new cleaning model also was proposed with amphoteric behavior of electrolytically ionized water which had already shown excellent particle removing efficiency. Having its non-equilibrium and amphoteric properties, electrolyzed ion water seemed to oxidize contaminant surface selectively in nano-scale and then to lift up oxidized ones from mask surface very effectively. This assumption should be further investigated in future in junction with hydrogen bonding and cluster of water molecules.

Development of Particle Deposition System for Cleaning Process Evaluation in Semiconductor Fabrication (반도체 세정 공정 평가를 위한 나노입자 안착 시스템 개발)

  • Nam, Kyung-Tag;Kim, Ho-Joong;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3168-3172
    • /
    • 2007
  • As the minimum feature size decreases, control of contamination by nanoparticles is getting more attention in semiconductor process. Cleaning technology which removes nanoparticles is essential to increase yield. A reference wafer on which particles with known size and number are deposited is needed to evaluate the cleaning process. We simulated particle trajectories in the chamber by using FLUENT and designed a particle deposition system which consists of scanning mobility particle sizer (SMPS) and deposition chamber. Charged monodisperse particles are generated using SMPS and deposited on the wafer by electrostatic force. The experimental results agreed with the simulation results well in terms of particle number and deposition area according to particle size, flow rate and deposition voltage.

  • PDF

Development of LGP Dry Cleaning Equipment using ESD and Adhesive Roll (ESD와 점착 롤 제진을 이용한 LGP 건식 세정 장치 개발)

  • Ku, Ja-Yl;Jun, SungHo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.195-201
    • /
    • 2014
  • In this paper, we developed a LGP(Light Guide Panel) dry cleaning system for particle cleaning using corona discharge and dry adhesive roll. Therefore, we design a cleaning mechanism that can be applied dry adhesive dust removal roll and ESD(electrostatic discharge) by using corona discharge. Also, we design and implementation of equipment, which can loading, unloading and transfer LGP automatically. The developed equipment is dust and particle cleaning experimental results to demonstrate its stability.

Effect of Chemical Mechanical Cleaning(CMC) on Particle Removal in Post-Cu CMP Cleaning (구리 CMP 후 연마입자 제거에 화학 기계적 세정의 효과)

  • Kim, Young-Min;Cho, Han-Chul;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1023-1028
    • /
    • 2009
  • Cleaning is required following CMP (chemical mechanical planarization) to remove particles. The minimization of particle residue is required with each successive technology generation, and the cleaning of wafers becomes more complicated. In copper damascene process for interconnection structure, it utilizes 2-step CMP consists of Cu and barrier CMP. Such a 2-steps CMP process leaves a lot of abrasive particles on the wafer surface, cleaning is required to remove abrasive particles. In this study, the chemical mechanical cleaning(CMC) is performed various conditions as a cleaning process. The CMC process combined mechanical cleaning by friction between a wafer and a pad and chemical cleaning by CMC solution consists of tetramethyl ammonium hydroxide (TMAH) / benzotriazole (BTA). This paper studies the removal of abrasive on the Cu wafer and the cleaning efficiency of CMC process.

The Study on Wafer Cleaning Using Excimer Laser (엑사이머 레이저를 이용한 웨이퍼 크리닝에 관한 고찰)

  • 윤경구;김재구;이성국;최두선;신보성;황경현;정재경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.743-746
    • /
    • 2000
  • The removal of contaminants of silicon wafers has been investigated by various methods. Laser cleaning is the new dry cleaning technique to replace wafer wet cleaning in the near future. A dry laser cleaning uses inert gas jet to remove contaminant particles lifted off by the action of a KrF excimer laser. A laser cleaning model is developed to simulate the cleaning process and analyze the influence of contaminant particles and experimental parameters on laser cleaning efficiency. The model demonstrates that various types of submicrometer-sized particles from the front sides of silicon wafer can be efficiently removed by laser cleaning. The laser cleaning is explained by a particle adhesion model. including van der Waals forces and hydrogen bonding, and a particle removal model involving rapid thermal expansion of the substrate due to the thermoelastic effect. In addition, the experiment of wafer laser cleaning using KrF excimer laser was conducted to remove various contaminant particles.

  • PDF

Effect of buffing on particle removal in post-Cu CMP cleaning (구리 CMP 후 연마입자 제거에 버프 세정의 효과)

  • Kim, Young-Min;Cho, Han-Chul;Jeong, Hae-Do
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1880-1884
    • /
    • 2008
  • Cleaning is required following CMP (chemical mechanical planarization) to remove particles. The minimization of particle residue is required with each successive technology generation, and the cleaning of wafers becomes more complicated. In copper damascene process for interconnection structure, it utilizes 2-steop CMP consists of Cu CMP and barrier CMP. Such a 2-steps CMP process leaves a lot of abrasive particles on the wafer surface, cleaning is required to remove abrasive particles. In this study, the buffing is performed various conditions as a cleaning process. The buffing process combined mechanical cleaning by friction between a wafer and a buffing pad and chemical cleaning by buffing solution consists of tetramethyl ammonium hydroxide (TMAH)/benzotriazole(BTA).

  • PDF