• Title/Summary/Keyword: partially encased composite columns

Search Result 10, Processing Time 0.017 seconds

Structural behavior of partially encased composite columns under axial loads

  • Pereira, Margot F.;De Nardin, Silvana;El Debs, Ana L.H.C.
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1305-1322
    • /
    • 2016
  • This paper presents the results of experimental and numerical model analyses on partially encased composite columns under concentric loads. The main objective of this study is to evaluate the influence of replacing the conventional longitudinal and transverse steel bars by welded wire mesh on the structural behavior of these members under concentric loads. To achieve these goals experimental tests on four specimens of partially encased composite columns submitted to axial loading were performed and the results were promising in terms of replacing the traditional reinforcement by steel meshes. In addition, a numerical FE model was developed using the software DIANA$^{(R)}$ with FX+. The experimental results were used to validate the numerical model. Satisfactory agreement between experimental and numerical results was observed in both capacity and deformability of the composite columns. Despite of the simplifying assumptions of perfect bond between steel and concrete, the numerical model adequately represented the columns behavior. A finite element parametric study was performed and parameters including thickness of the steel profile and the concrete and steel strengths were evaluated. The parametrical study results found no significant changes in the partially encased columns behavior due to variations of the steel profile thickness or yield strength. However, significant changes in the post peak behavior were observed when using high strength concrete and these results suggest a change in the failure mode.

Simulations of PEC columns with equivalent steel section under gravity loading

  • Begum, Mahbuba;Ghosh, Debaroti
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.305-323
    • /
    • 2014
  • This paper presents numerical simulations of partially encased composite columns (PEC) with equivalent steel sections. The composite section of PEC column consists of thin walled welded H- shaped steel section with transverse links provided at regular intervals between the flanges. Concrete is poured in the space between the flanges and the web plate. Most of the structural analysis and design software do not handle such composite members due to highly nonlinear material behavior of concrete as well as due to the complex interfacial behaviour of steel and concrete. In this paper an attempt has been made to replace the steel concrete composite section by an equivalent steel section which can be easily incorporated in the design and analysis software. The methodology used for the formulation of the equivalent steel section is described briefly in the paper. Finite element analysis is conducted using the equivalent steel section of partially encased composite columns tested under concentric gravity loading. The reference test columns are obtained from the literature, encompassing a variety of geometric and material properties. The finite element simulations of the composite columns with equivalent steel sections are found to predict the experimental behaviour of partially encased composite columns with very good accuracy.

Mechanical behaviour of partially encased composite columns confined by CFRP under axial compression

  • Liang, Jiongfeng;Zhang, Guangwu;Wang, Jianbao;Hu, Minghua
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.125-131
    • /
    • 2019
  • This paper presents the results of an experimental study to investigate the mechanical behavior of partially encased composite columns confined by CFRP under axial compression. The results show that the failure of the partially encased composite columns confined by CFRP occurred due to rupture of the CFRP followed by local buckling of the steel flanges. External wrapping of CFRP effectively delayed the local buckling of the steel flanges. The load carrying capacity of the column increased with the application of CFRP sheet. And the enhancement effect of the column was increased with the number of CFRP layer.

Partially encased composite columns using fiber reinforced concrete: experimental study

  • Pereira, Margot F.;De Nardin, Silvana;El. Debs, Ana L.H.C.
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.909-927
    • /
    • 2020
  • This paper addresses the results of an experimental study involving 10 partially encased composite columns under concentric and eccentric compressive loads. Parameters such as slenderness ratio, ordinary reinforced concrete and fiber reinforced concrete, load eccentricity and bending axis were investigated. The specimens were tested to investigate the effects of replacing the ordinary reinforced concrete by fiber reinforced concrete on the load capacity and behavior of short and slender composite columns. Various characteristics such as load capacity, axial strains behavior, stiffness, strains on steel and concrete and failure mode are discussed. The main conclusions that may be drawn from all the test results is that the behavior and ultimate load are rather sensitive to the slenderness of the columns and to the eccentricity of loading, specially the bending axis. Experimental results also indicate that replacing the ordinary reinforced concrete by steel fiber reinforced concrete has no considerable effects on the load capacity and behavior of the short and slender columns and the proposed replacement presented very good results.

Parametric study on eccentrically-loaded partially encased composite columns under major axis bending

  • Begum, Mahbuba;Driver, Robert G.;Elwi, Alaa E.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1299-1319
    • /
    • 2015
  • This paper presents a detailed parametric study, conducted using finite element tools to cover a range of several geometric and material parameters, on the behaviour of thin-walled partially encased composite (PEC) columns. The PEC columns studied herein are composed of thin-walled built-up H-shaped steel sections with concrete infill cast between the flanges. Transverse links are provided between the opposing flanges to improve resistance to local buckling. The parametric study is confined to eccentrically-loaded columns subjected to major axis bending only. The parameters that were varied include the overall column slenderness ratio (L/d), load eccentricity ratio (e/d), link spacing-to-depth ratio (s/d), flange plate slenderness ratio (b/t) and concrete compressive strength ($f_{cu}$). The overall column slenderness ratio was chosen to be the primary variable with values of 5, 10 and 15. Other parameters were varied within each case of L/d ratio. The effects of the selected parameters on the behaviour of PEC columns were studied with respect to the failure mode, peak axial load, axial load versus average axial strain response, axial load versus lateral displacement response, moment versus lateral displacement behaviour and the axial load-moment interaction diagram. The results of the parametric study are presented in the paper and the influences of each of the parameters investigated are discussed.

Axial compressive behavior of partially encased recycled aggregate concrete stub columns after exposure to high temperatures

  • Jiongfeng Liang;Wanjie Zou;Liuhaoxiang Wang;Wei Li
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.121-134
    • /
    • 2024
  • To investigate the compressive behavior of partially encased recycled aggregate concrete (PERAC) stub columns after exposed to elevated temperatures, 22 specimens were tested. The maximum temperature suffered, the replacement ratio of recycled coarse aggregate (RCA), the endurance time and the spacing between links were considered as the main parameters. It was found that the failure mode of post-heated PERAC columns generally matched that of traditional partially encased composite (PEC) columns, but the flange of specimens appeared premature buckling after undergoing the temperature of 400℃ and above. Additionally, the ultimate strength and ductility of the specimens deteriorated with the elevated temperatures and extended heating time. When 400℃< T ≤ 600℃, the strength reduction range is the largest, about 11% ~ 17%. The higher the replacement ratio of RCA, the lower the ultimate strength of specimens. At the temperature of 600℃, the ultimate strength of specimens with the RCA replacement ratio of 50% and 100% is 0.94 and 0.91 times than that of specimens without RCA, respectively. But the specimen with 50% replacement ratio of RCA showed the best ductility performance. And the bearing capacity and ductility of PERAC stub columns were changed for the better due to the application of links. When the RCA replacement ratio is 100%, the ultimate strength of specimens with the link spacing of 100 mm and 50 mm increased 14% and 25% than that of the specimen without links, respectively. Based on the results above, a formula for calculating the ultimate strength of PERAC stub columns after exposure to high temperatures was proposed.

Axial load-strain relationships of partially encased composite columns with H-shaped steel sections

  • Bangprasit, Papan;Anuntasena, Worakarn;Lenwari, Akhrawat
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.51-66
    • /
    • 2022
  • This paper presents the axial compression behavior of partially encased composite (PEC) columns using H-shaped structural steel. In the experimental program, a total of eight PEC columns with H-shaped steel sections of different flange and web slenderness ratios were tested to investigate the interactive mechanism between steel and concrete. The test results showed that the PEC columns could sustain the load well beyond the peak load provided that the flange slenderness ratio was not greater than five. In addition, the previous analytical model was extended to predict the axial load-strain relationships of the PEC columns with H-shaped steel sections. A good agreement between the predicted load-strain relationships and test data was observed. Using the analytical model, the effects of compressive strength of concrete (21 to 69 MPa), yield strength of steel (245 to 525 MPa), slenderness ratio of flange (4 to 10), and slenderness ratio of web (10 to 25) on the interactive mechanism (Kh = confinement factor for highly confined concrete and Kw = reduction factor for steel web) and ductility index (DI = ratio between strain at peak load and strain at proportional load) were assessed. The numerical results showed that the slenderness of steel flange and yield strength of steel significantly influenced the compression behavior of the PEC columns.

Finite element modelling and design of partially encased composite columns

  • Chicoine, Thierry;Tremblay, Robert;Massicotte, Bruno
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.171-194
    • /
    • 2002
  • In this paper, the behaviour of axially loaded partially encased composite columns made with light welded H steel shapes is examined using ABAQUS finite element modelling. The results of the numerical simulations are compared to the response observed in previous experimental studies on that column system. The steel shape of the specimens has transverse links attached to the flanges to improve its local buckling capacity and concrete is poured between the flanges only. The test specimens included 14 stubcolumns with a square cross section ranging from 300 mm to 600 mm in depth. The transverse link spacing varied from 0.5 to 1 times the depth and the width-to-thickness ratio of the flanges ranged from 23 to 35. The numerical model accounted for nonlinear stress-strain behaviour of materials, residual stresses in the steel shape, initial local imperfections of the flanges, and allowed for large rotations in the solution. A Riks displacement controlled strategy was used to carry out the analysis. Plastic analyses on the composite models reproduced accurately the capacity of the specimens, the failure mode, the axial strain at peak load, the transverse stresses in the web, and the axial stresses in the transverse links. The influence of applying a typical construction loading sequence could also be reproduced numerically. A design equation is proposed to determine the axial capacity of this type of column.

Inelastic Behavior of the SRC Column (SRC 합성교각의 비탄성 거동)

  • Jung, In-Keun;Min, Jin;Shim, Chang-Su;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.300-307
    • /
    • 2005
  • Steel Reinforced Concrete (SRC) composite column has several advantage such as excellent durability, rapid construction, reduction of column section. Due to these aspect, applications of SRC columns to bridge piers are continuously increasing. For the design of relatively large SRC columns for bridge piers, it is necessary to check the current design provisions which were based on small section having higher steel ratio. In this study, seven concrete encased composite columns were fabricated and static tests were performed. Embedded steel members were a H-shape rolled beam and a partially filled steel tube. Based on the test results, the ultimate strength according to section details and local behavior were estimated. For the analysis of inelastic behavior of the SRC column, the cracked section stiffness of the columns was evaluated and compared with calculations. The stiffness of the cracked section showed that 25% of the initial value and this stiffness reduction occurred at 85% of the ultimate load in the experiments.

  • PDF

Static Tests on SRC Columns (SRC 기둥에 대한 정적실험)

  • Jung In Keun;Min Jin;Shim Chang Su;Chung Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.97-100
    • /
    • 2004
  • Steel encased composite columns are widely used due to their excellent structural performance in terms of stiffness, strength, and ductility. However, experimental studies were usually for the columns having higher steel ratio $(3-4\%)$. There are two different design concepts for SRC columns. ACI-318 specifies the design strength of the column using the same concept of reinforced concrete columns. AISC-LRFD specifies the P-M diagram using the concept of steel column. In this paper, SRC columns have the steel ratio of $0.53\%\;and\;1.06\%$. From the test results, ACI-318 specifications showed better evaluation of SRC columns having low steel ratio. H beam and steel tube partially filled with concrete were embedded in concrete. Flexural tests showed considerably high ductility.

  • PDF