• Title/Summary/Keyword: partial pressure

Search Result 1,423, Processing Time 0.024 seconds

Effects of oxygen partial pressure on the properties of indium tin oxide film on PET substrates by RF magnetron sputtering (RF 마그네트론 스퍼터링법에 의해 PET 기판 위에 증착된 ITO 박막의 특성에 대한 산소 분압의 영향)

  • Kim, Seon Tae;Kim, Tae Gyu;Cho, Hyun;Kim, Jin Kon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.6
    • /
    • pp.252-255
    • /
    • 2014
  • Indium tin oxide (ITO) films with various oxygen partial pressure from 0 to $6{\times}10^{-5}$ Pa were prepared onto polyethylene terephthalate (PET) using RF magnetron sputtering at room temperature. The structural, electrical and optical properties of the grown ITO films were investigated as a function of the oxygen partial pressure. The amorphous nature of the ITO films was dominant at the partial pressure below $1{\times}10^{-5}$ Pa and the degree of crystallinity increased as the oxygen concentration increased further. This structural change comes with the increased carrier concentration and reduction of the electrical resistivity down to $9.8{\times}10^{-4}{\Omega}{\cdot}cm$. The average transmittance (at 400~800 nm) of the ITO deposited on the PET substrates increased as the oxygen partial pressure increased and transmittance above 80 % was achieved with the partial pressure of $4{\times}10^{-5}$ Pa. The results show that the choice of optimal oxygen partial pressure can present improved film crystallinity, the increased carrier concentration, and the enhancement in the electrical conductivity.

Working partial pressure of $CO_2$ gas in aqueous solution

  • Kim Dong-Su
    • Resources Recycling
    • /
    • v.14 no.4 s.66
    • /
    • pp.47-52
    • /
    • 2005
  • Carbonate species in aqueous solution play an important role in the determination of chemical properties of water in relation with alkalinity, buffer capacity, biological productivity, and so on. These compounds also have reactive characteristics such as interphasal reactions between solid, liquid, and gas phases. In the absence of solid materials, the total amount and relative abundance of each carbonate species are directly influenced by the partial pressure of $CO_2$ gas in the atmosphere, which in turn significantly affects the properties of aquatic system. In the water/wastewater treatment process along with the wastes treatment and recycling process which occurring in aquatic environment, it is essential to figure out its characteristics for their optimization and one of its most influential features upon these processes is determined by carbonate species. To understand the fundamental aspect of the relationship between the partial pressure of $CO_2$ gas and chemical features of water, especially pH, the working partial pressure of pure $CO_2$ gas that produced by contacting the dry ice with water has been estimated based on equilibrium calculation. The equilibrium constants for the dissociation ot carbonic acid were determined using van't Hoff equation and the distribution diagram of carbonate species according to the pH has been constructed to substantiate the results of equilibrium calculation. The estimated working partial pressure of pure $CO_2$ gas was found to be a function of the concentration of carbonates in solution, which suggesting that Prior evaluation of the working partial pressure of gas is essential for a better understanding of aquatic interactions.

Characteristics of AlN Dielectric Layer for Metal PCB as a Function of Nitrogen Partial Pressure Using RF-Magnetron Sputtering Method (RF-Magnetron Sputtering 방법을 이용해 질소분압비에 따른 금속 PCB용 AlN 절연막의 특성)

  • Kim, Hwa-Min;Park, Jeong-Sik;Kim, Dong-Young;Bae, Kang;Sohn, Sun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.10
    • /
    • pp.759-762
    • /
    • 2010
  • In this investigation, the effects of $N_2/(Ar+N_2)$ gas partial pressure on the structural, electrical, and thermal properties of AlN dielectric layers prepared on aluminum substrates using RF-magnetron sputtering method were analyzed. Among the films, the AlN dielectric film deposited under $N_2/(Ar+N_2)$ gas partial pressure of 75% exhibit the highest AlN (002) preferred orientation, which was grain size of about 15.32 nm and very dense structure. We suggest the possibilities of it's application as a dielectric layer for metal PCB because the AlN films prepared at optimized gas partial pressure can improving the insulating property, the thermal conductivity, and thermal diffusivity of the films.

Effects of Oxygen Partial Pressure on the Structural Properties of Sputtered Vanadium Oxide Thin Films (스퍼터된 바나듐 산화막의 구조적 특성에 미치는 산소 분압의 효과)

  • 최복길;최용남;최창규;권광호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.435-438
    • /
    • 2001
  • Thin films of vanadium oxide(VO$\sub$x/) have been deposited by r.f. magnetron sputtering from V$_2$O$\sub$5/ target in gas mixture of argon and oxygen. The oxygen/(oxygen+argon) partial pressure ratio is changed from 0% to 8%. Crystal structure, chemical composition and bonding properties of films sputter-deposited under different oxygen gas pressures are characterized through XRO, XPS, RBS and FTIR measurements. All the films prepared below 8% O$_2$ are amorphous, and those prepared without oxygen are gray indicating the presence of V$_2$O$\sub$$_4$/ phase in the films. V$_2$O$\sub$5/ and lower oxides co-exist in sputter-deposited films and as the oxygen partial pressure is increased the films become more stoichiometric V$_2$O$\sub$5/. The increase of O/V ratio with increasing oxygen gas pressure is attributed to the partial filling of oxygen vacancies through diffusion. It is observed that the oxygen atoms. located on the V-O plane of V$_2$O$\sub$5/ layer participate more readily in the oxidation process.

  • PDF

Study on the Reduction of Forging Oxide Scale using Hydrogen (단조 산화스케일로부터 철계분말 제조 기술개발 연구)

  • Lee, Dong-Won;Yun, Jung-Yeul;Shin, Shun-Myung;Kim, In-Soo;Wang, Jei-Pil
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.174-179
    • /
    • 2013
  • The study on the fabrication of iron powder from forging scales using hydrogen gas has been conducted on the effect of hydrogen partial pressure, temperature, and reactive time. The mechanism for the reduction of iron oxides was proposed with various steps, and it was found that reduction pattern might be different depending on temperature. The iron content in the scale and reduction ratio of oxygen were both increased with increasing reactive time at 0.1atm of hydrogen partial pressure. On the other hand, for over 30 minutes at 0.5 atm of hydrogen partial pressure, the values were found to be almost same. In the long run, iron metallic powder was obtained with over 90% of iron content and an average size of its powder was observed to be about $100{\mu}m$.

Effects of Oxygen Partial Pressure and Post-Annealing Temperature on Structure of ZnO Thin Film Prepared by Pulsed Laser Deposition (PLD를 이용한 ZnO 박막의 구조에 산소 분압 및 후열처리 온도가 미치는 영향)

  • Cho, Dae-Hyung;Kim, Ji-Hong;Koo, Sang-Mo;Moon, Byung-Moo
    • Proceedings of the KIEE Conference
    • /
    • 2007.11a
    • /
    • pp.88-89
    • /
    • 2007
  • ZnO thin films were deposited on $Al_2O_3$ (alumina) substrates by pulsed laser deposition (PLD) using Nd:YAG laser with a wavelength of 355nm, at room temperature and oxygen partial pressure of 1, 10, 30, 50, 100, and 200m Torr. Furthermore, deposited ZnO thin films were post-annealed at 400, 550, $600^{\circ}C$. The effects of oxygen partial pressure and post-annealing temperature on structural properties of the deposited films have been investigated by means of X-ray diffraction (XRD), and atomic force microscope (AFM), respectively. It has been found that ZnO thin films exhibit c-axis orientation, exhibiting an increased foil width at half maximum (FWHM) value of (002) diffraction peak at 30m Torr oxygen partial pressure and higher post-annealing temperature ($700^{\circ}C$).

  • PDF

Potential of Thermal Stratification and Partial Fuel Stratification for Reducing Pressure Rise Rate in HCCI Engines (HCCI 기관에 있어서의 층상 흡기를 통한 압력 상승률 저감에 대한 단위반응 수치 해석)

  • Lim, Ock-Taeck
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.21-28
    • /
    • 2009
  • The purpose of this study is to gain a better understanding of the effects of thermal stratification and partial fuel stratification on reducing the pressure-rise rate and emission in HCCI combustion. The engine is fueled with Di-Methyl Ether(DME) which has unique 2-stage heat release. Computational work is conducted with multi-zones model and detailed chemical reaction scheme. Calculation result shows that wider thermal stratification and partial fuel stratification prolong combustion duration and reduce pressure rise rate. But too wide partial fuel stratification increases CO and NOx concentration in exhaust gas, and decreases combustion efficiency.

  • PDF

Hydrogen Reduction Behavior of NCM-based Lithium-ion Battery Cathode Materials (NCM계 리튬이온 배터리 양극재의 수소환원 거동)

  • So-Yeong Lee;So-Yeon Lee;Dae-Hyeon Lee;Ho-Sang Sohn
    • Journal of Powder Materials
    • /
    • v.31 no.2
    • /
    • pp.163-168
    • /
    • 2024
  • As the demand for lithium-ion batteries for electric vehicles is increasing, it is important to recover valuable metals from waste lithium-ion batteries. In this study, the effects of gas flow rate and hydrogen partial pressure on hydrogen reduction of NCM-based lithium-ion battery cathode materials were investigated. As the gas flow rate and hydrogen partial pressure increased, the weight loss rate increased significantly from the beginning of the reaction due to the reduction of NiO and CoO by hydrogen. At 700 ℃ and hydrogen partial pressure above 0.5 atm, Ni and Li2O were produced by hydrogen reduction. From the reduction product and Li recovery rate, the hydrogen reduction of NCM-based cathode materials was significantly affected by hydrogen partial pressure. The Li compounds recovered from the solution after water leaching of the reduction products were LiOH, LiOH·H2O, and Li2CO3, with about 0.02 wt% Al as an impurity.

Pressure Distribution Analysis for After Bush Bearing of Ship Propulsion Shaft (선박 추진축 선미 베어링 압력 분포 해석)

  • 신상훈;최익흥
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.3
    • /
    • pp.35-40
    • /
    • 2004
  • Since the scale of vessels is growing up recently, some troubles between the shaft and after bush bearing are frequently reported. Generally, mean pressure on bush bearing is used as a design criterion. However, in some case of the long bearing such as after bush bearing of the propulsion shaft, it might be liable to be locally under high pressure. As for the main engine bearings and the intermediate shaft bearing, it is reasonable to take the mean pressure as a design criterion. But, in case of after bush bearing, it is not sufficient because of the possibility of high pressure caused by local contact. In this study, Hertzian contact condition was applied to evaluation of the local pressure for after bush bearing. To reduce the local maximum pressure, the height of the after bush bearing was controlled. It was found that local maximum pressure could be reduced effectively by taking a partial slope on the white metal of the aft bush bearing.

Electrical Conduction in $SrZr_{0.95}Y_{0.05}O_{2.975}$ Ceramics

  • Baek, Hyun-Deok;Noh, Jin-Hyo
    • The Korean Journal of Ceramics
    • /
    • v.5 no.3
    • /
    • pp.288-295
    • /
    • 1999
  • Partial conductivities contributed by electron holes, oxygen ions, and protons were caluclated in $SrZr_{0.95}Y_{0.05}O_{2.975}$, using the reported formulae derived from the defect chemistry of HTPCs. Required parameters were obtained from the graphical analysis of total conductivity variation against partial pressure of water vapor and oxygen. Predicted overall conductivities showed a reasonable agreement with experimental measurements. The conductivity of the material showed a linear increase with square root of the water vapor pressure. This increase was due to proton conduction in an almost pure ionic conductivity. The calculation of partial conductivities at $800^{\circ}C$ resulted in an almost pure ionic conductivity at $P_{02}=10^{-10}$ atm and a predominant hole conductivity at $P_{02}=10^{-10}$ atm. Pure proton conduction was not expected at this temperature, contrary to the earlier reports. Discussions were made in relation with reported thermodynamic data and defect structure of the material. It was shown that from the total conductivity dependence on water vapor pressure, the pure ionic conductivity at low oxygen partial pressures could be separated into protonic and oxygen ionic conductivity in $ZrO_2$-based HTPCs.

  • PDF