• Title/Summary/Keyword: partial least squares regression analysis

Search Result 105, Processing Time 0.026 seconds

A Study on the Decision-making Factors of Living-in Idea into Unsold Apartment of Metropolitan Area (수도권 미분양아파트 구매의사결정 영향요인 분석)

  • Tak, Jung-Ho;Rho, Jeong-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.4
    • /
    • pp.247-255
    • /
    • 2017
  • The study figured out the preference factors which should be considered for investor on decision making of unsold apartment and analyzed by comparing the difference according to the type. Then, it investigated the preference factors through the previous studies to analyze the influence factor of decision making and demonstrated the effects through the PLS (Partial Least Squares) regression. In addition, it separated the target type to tenants and construction firms and carried out the survey for comparing the preference factors of investor type. The result of analysis found out that tenants emphasis on preference factors such as the internal factor (1.141), conditional relaxation (1.114), environment factor (1.107), social factor (1.048), external factor (1.030), educational environment factor (1.010) and etc. Then, construction firms emphasis on preference factors such as the social factor (1.401), environment factor (1.251), conditional relaxation (1.133) and etc. In addition, common preferences factors are the conditional relaxation, social factor, environment factor.

Rancidity Prediction of Soybean Oil by Using Near-Infrared Spectroscopy Techniques

  • Hong, Suk-Ju;Lee, Ah-Yeong;Han, Yun-hyeok;Park, Jongmin;So, Jung Duck;Kim, Ghiseok
    • Journal of Biosystems Engineering
    • /
    • v.43 no.3
    • /
    • pp.219-228
    • /
    • 2018
  • Purpose: This study evaluated the feasibility of a near-infrared spectroscopy technique for the rancidity prediction of soybean oil. Methods: A near-infrared spectroscopy technique was used to evaluate the rancidity of soybean oils which were artificially deteriorated. A soybean oil sample was collected, and the acid values were measured using titrimetric analysis. In addition, the transmission spectra of the samples were obtained for whole test periods. The prediction model for the acid value was constructed by using a partial least-squares regression (PLSR) technique and the appropriate spectrum preprocessing methods. Furthermore, optimal wavelength selection methods such as variable importance in projection (VIP) and bootstrap of beta coefficients were applied to select the most appropriate variables from the preprocessed spectra. Results: There were significantly different increases in the acid values from the sixth days onwards during the 14-day test period. In addition, it was observed that the NIR spectra that exhibited intense absorption at 1,195 nm and 1,410 nm could indicate the degradation of soybean oil. The PLSR model developed using the Savitzky-Golay $2^{nd}$ order derivative method for preprocessing exhibited the highest performance in predicting the acid value of soybean oil samples. onclusions: The study helped establish the feasibility of predicting the rancidity of the soybean oil (using its acid value) by means of a NIR spectroscopy together with optimal variable selection methods successfully. The experimental results suggested that the wavelengths of 1,150 nm and 1,450 nm, which were highly correlated with the largest absorption by the second and first overtone of the C-H, O-H stretch vibrational transition, were caused by the deterioration of soybean oil.

Simultaneous Determination of Anionic and Nonionic Surfactants Using Multivariate Calibration Method (다변량 분석법에 의한 Anionic Surfactant와 Nonionic Surfactant의 동시정량)

  • Sang Hak Lee;Soon Nam Kwon;Bum Mok Son
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.1
    • /
    • pp.19-25
    • /
    • 2003
  • A spectrophotometric method for the simultaneous determination of anionic and nonionic surfactant based on the application of multivariate calibration method such as principal component regression(PCR) and partial least squares(PLS) has been studied. The calibration models in PCR and PLS were obtained from the spectral data in the range of 400~700 nm for each standard of a calibration set of 26 standards, each containing different amounts of two surfactants. The relative standard error of prediction(RSEP$_{\alpha}$) was obtained to assess the model goodness in quantifying each analyte in a 5 validation samples which containing different amounts of two surfactants.

RAPID PREDICTION OF ENERGY CONTENT IN CEREAL FOOD PRODUCTS WITH NIRS.

  • Kays, Sandra E.;Barton, Franklin E.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1511-1511
    • /
    • 2001
  • Energy content, expressed as calories per gram, is an important part of the evaluation and marketing of foods in developed countries. Currently accepted methods of measurement of energy by U.S. food labeling legislation include measurement of gross calories by bomb calorimetry with an adjustment for undigested protein and by calculation using specific factors for the energy values of protein, carbohydrate less the amount of insoluble dietary fiber, and total fat. The ability of NIRS to predict the energy value of diverse, processed and unprocessed cereal food products was investigated. NIR spectra of cereal products were obtained with an NIR Systems monochromator and the wavelength range used for analysis was 1104-2494 nm. Gross energy of the foods was measured by oxygen bomb calorimetry (Parr Manual No. 120) and expressed as calories per gram (CPGI, range 4.05-5.49 cal/g). Energy value was adjusted for undigested protein (CPG2, range 3.99-5.38 cal/g) and undigested protein and insoluble dietary fiber (CPG3, range 2.42-5.35 cal/g). Using a multivariate analysis software package (ISI International, Inc.) partial least squares models were developed for the prediction of energy content. The standard error of cross validation and multiple coefficient of determination for CPGI using modified partial least squares regression (n=127) was 0.060 cal/g and 0.95, respectively, and the standard error of performance, coefficient of determination, bias and slope using an independent validation set (n=59) were 0.057 cal/g, 0.98, -0.027 cal/g and 1.05 respectively. The PLS loading for factor 1 (Pearson correlation coefficient 0.92) had significant absorption peaks correlated to C-H stretch groups in lipid at 1722/1764 nm and 2304/2346 nm and O-H groups in carbohydrate at 1434 and 2076 nm. Thus the model appeared to be predominantly influenced by lipid and carbohydrate. Models for CPG2 and CPG3 showed similar trends with standard errors of performance, using the independent validation set, of 0.058 and 0.088 cal/g, respectively, and coefficients of determination of 0.96. Thus NIRS provides a rapid and efficient method of predicting energy content of diverse cereal foods.

  • PDF

Influence Analysis of Investor Preference for Investment Satisfaction Degree on Decision Making of Real Estate Investment (부동산 투자의사결정에 있어 투자자 선호특성이 투자만족도에 미치는 영향 분석)

  • Paek, Jun-Seok;Kim, Gu-Hoi;Lee, Joo-Hyung
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.3
    • /
    • pp.553-562
    • /
    • 2016
  • Then, it investigated the investment preference through the previous studies to analyze the influence factor of investment satisfaction and demonstrated the effects through the PLS (Partial Least Squares) regression. In addition, it separated the target type to institutional investors and retail investors and carried out the survey for comparing the investment preference of investor type. The result of analysis found out that institutional investors emphasis on investment preference such as the Inflation hedge, Early payback, Financial stability, Leverage risk and etc. Then, general investors emphasis on investment preference such as the Rental income, Facilities and Equipment, Business area and population, Ease of use, Leverage risk, Early payback and etc. In addition, common investment preferences are the Leverage risk, Early payback and Facility accessibility.

Discrimination of Cultivars and Cultivation Origins from the Sepals of Dry Persimmon Using FT-IR Spectroscopy Combined with Multivariate Analysis (FT-IR 스펙트럼 데이터의 다변량 통계분석을 이용한 곶감의 원산지 및 품종 식별)

  • Hur, Suel Hye;Kim, Suk Weon;Min, Byung Whan
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.20-26
    • /
    • 2015
  • This study aimed to establish a rapid system for discriminating the cultivation origins and cultivars of dry persimmons, using metabolite fingerprinting by Fourier transform infrared (FT-IR) spectroscopy combined with multivariate analysis. Whole-cell extracts from the sepals of four Korean cultivars and two different Chinese dry persimmons were subjected to FT-IR spectroscopy. Principle component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) of the FT-IR spectral data successfully discriminated six dry persimmons into two groups depending on their cultivation origins. Principal component loading values showed that the 1750-1420 and $1190-950cm^{-1}$ regions of the FT-IR spectra were significantly important for the discrimination of cultivation origins. The accuracy of prediction of the cultivation origins and cultivars by PLS regression was 100% (p<0.01) and 85.9% (p<0.05), respectively. These results clearly show that metabolic fingerprinting of FT-IR spectra can be applied for rapid discrimination of the cultivation origins and cultivars of commercial dry persimmons.

Prediction of Heavy Metal Content in Compost Using Near-infrared Reflectance Spectroscopy

  • Ko, H.J.;Choi, H.L.;Park, H.S.;Lee, H.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1736-1740
    • /
    • 2004
  • Since the application of relatively high levels of heavy metals in the compost poses a potential hazard to plants and animals, the content of heavy metals in the compost with animal manure is important to know if it is as a fertilizer. Measurement of heavy metals content in the compost by chemical methods usually requires numerous reagents, skilled labor and expensive analytical equipment. The objective of this study, therefore, was to explore the application of near-infrared reflectance spectroscopy (NIRS), a nondestructive, cost-effective and rapid method, for the prediction of heavy metals contents in compost. One hundred and seventy two diverse compost samples were collected from forty-seven compost facilities located along the Han river in Korea, and were analyzed for Cr, As, Cd, Cu, Zn and Pb levels using inductively coupled plasma spectrometry. The samples were scanned using a Foss NIRSystem Model 6500 scanning monochromator from 400 to 2,500 nm at 2 nm intervals. The modified partial least squares (MPLS), the partial least squares (PLS) and the principal component regression (PCR) analysis were applied to develop the most reliable calibration model, between the NIR spectral data and the sample sets for calibration. The best fit calibration model for measurement of heavy metals content in compost, MPLS, was used to validate calibration equations with a similar sample set (n=30). Coefficient of simple correlation (r) and standard error of prediction (SEP) were Cr (0.82, 3.13 ppm), As (0.71, 3.74 ppm), Cd (0.76, 0.26 ppm), Cu (0.88, 26.47 ppm), Zn (0.84, 52.84 ppm) and Pb (0.60, 2.85 ppm), respectively. This study showed that NIRS is a feasible analytical method for prediction of heavy metals contents in compost.

Elemental analysis of rice using laser-ablation sampling: Determination of rice-polishing degree

  • Yonghoon Lee
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.12-24
    • /
    • 2024
  • In this study, laser-induced breakdown spectroscopy (LIBS) was used to estimate the degree of rice polishing. As-threshed rice seeds were dehusked and polished for different times, and the resulting grains were analyzed using LIBS. Various atomic, ionic, and molecular emissions were identified in the LIBS spectra. Their correlation with the amount of polished-off matter was investigated. Na I and Rb I emission line intensities showed linear sensitivity in the widest range of polished-off-matter amount. Thus, univariate models based on those lines were developed to predict the weight percent of polished-off matter and showed 3-5 % accuracy performances. Partial least squares-regression (PLS-R) was also applied to develop a multivariate model using Si I, Mg I, Ca I, Na I, K I, and Rb I emission lines. It outperformed the univariate models in prediction accuracy (2 %). Our results suggest that LIBS can be a reliable tool for authenticating the degree of rice polishing, which is closed related to nutrition, shelf life, appearance, and commercial value of rice products.

Predicting Soil Chemical Properties with Regression Rules from Visible-near Infrared Reflectance Spectroscopy

  • Hong, Suk Young;Lee, Kyungdo;Minasny, Budiman;Kim, Yihyun;Hyun, Byung Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.5
    • /
    • pp.319-323
    • /
    • 2014
  • This study investigates the prediction of soil chemical properties (organic matter (OM), pH, Ca, Mg, K, Na, total acidity, cation exchange capacity (CEC)) on 688 Korean soil samples using the visible-near infrared reflectance (VIS-NIR) spectroscopy. Reflectance from the visible to near-infrared spectrum (350 to 2500 nm) was acquired using the ASD Field Spec Pro. A total of 688 soil samples from 168 soil profiles were collected from 2009 to 2011. The spectra were resampled to 10 nm spacing and converted to the 1st derivative of absorbance (log (1/R)), which was used for predicting soil chemical properties. Principal components analysis (PCA), partial least squares regression (PLSR) and regression rules model (Cubist) were applied to predict soil chemical properties. The regression rules model (Cubist) showed the best results among these, with lower error on the calibration data. For quantitatively determining OM, total acidity, CEC, a VIS-NIR spectroscopy could be used as a routine method if the estimation quality is more improved.

Application of SeaWiFS data for assessment of eutrophication in the Pearl River estuary

  • Chen, Chuqun;Li, Xiaobin
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.909-912
    • /
    • 2006
  • In this paper a method for remotely-sensed assessment of eutrophication was experimented. The water samples were collected for analysis of COD (chemical oxygen demand) and nutrients concentration, and the remote sensing reflectance data at the sampling points were synchronously measured using above-water method in two cruises, which were conducted in the Pearl River Estuary in January 2003 and January 2004 respectively. Based on the in-situ data the local algorithms for estimation of concentration of nutrients (P and N) and COD were developed by Partial Least Squares (PLS) regression. The algorithms were then applied to atmospheric-corrected SeaWiFS data and the COD and nutrients concentration in Pearl River Estuary were estimated. And then the assessment of eutrophication was carried out by comparison of the estimated nutrients and COD value with the water quality standard. The results show that the whole estuary is seriously in eutrophication.

  • PDF