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Abstract: In this study, laser-induced breakdown spectroscopy (LIBS) was used to estimate the degree of rice

polishing. As-threshed rice seeds were dehusked and polished for different times, and the resulting grains were

analyzed using LIBS. Various atomic, ionic, and molecular emissions were identified in the LIBS spectra. Their

correlation with the amount of polished-off matter was investigated. Na I and Rb I emission line intensities

showed linear sensitivity in the widest range of polished-off-matter amount. Thus, univariate models based on

those lines were developed to predict the weight percent of polished-off matter and showed 3-5 % accuracy

performances. Partial least squares-regression (PLS-R) was also applied to develop a multivariate model using

Si I, Mg I, Ca I, Na I, K I, and Rb I emission lines. It outperformed the univariate models in prediction accuracy

(2 %). Our results suggest that LIBS can be a reliable tool for authenticating the degree of rice polishing, which

is closed related to nutrition, shelf life, appearance, and commercial value of rice products.

Key words: laser ablation, elemental analysis, rice polishing, laser-induced breakdown spectroscopy, multivariate

modeling

1. Introduction

Recently, laser ablation has attracted much attention

as an alternative sampling method in combination

with elemental analysis techniques such as laser-induced

breakdown spectroscopy (LIBS), inductively-coupled

plasma optical emission spectroscopy (ICP-OES),

inductively-coupled plasma mass spectrometry (ICP-

MS) and other absorption- or fluorescence-based

techniques.1-3 Laser ablation atomizes solid materials

by focusing a pulsed laser beam on the sample surface.

Thus, complicated acid digestion and the following

dilution with a large factor can be removed from the

sample preparation process. LIBS is the simplest

laser-ablation-based elemental analysis technique.4,5

In typical LIBS analysis in which a nanosecond

pulsed laser is employed as an ablation source, the

pulse energy in the range from a few to hundreds

millijoules is focused into the area of ~104 mm2 on

the sample surface. A part of the laser pulse energy

is used to heat the solid material or to break the

chemical bonds among the atoms in the local area,

and the vaporized (or ablated) atoms are further

ionized to form a plasma. The other part of the laser
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pulse energy is absorbed by the emerging plasma in

the nanosecond laser pulse duration (~10 ns).6 The

laser-induced plasma is an expanding, transient matter

with a lifetime around a few tens of microseconds. It

is composed of high-energy particles of ions, electrons,

atoms, and small molecules. Eventually, the ions are

combined with electrons to form atoms, and the

atoms combine with each other to produce small

molecules such as CN, C2, oxides, fluorides, and

chlorides depending on the elemental compositions

of samples and ambient gas.7-12 The laser-induced

plasma dissipates its energy by emitting lights, sounds,

and heats. LIBS performs quantitative or qualitative

elemental analysis by recording the wavelength

dispersed optical emissions from the laser-induced

plasma. Typical temperature of laser-induced plasmas

is ~10,000 K. Generally, LIBS shows parts-per-million-

level detection capabilities for most elements in the

periodic table for the use of quantitative analysis

techniques.13 However, LIBS has various analytical

applications other than quantitative analysis. It can

quickly identify the major elements in a sample

material, classify or discriminate particular samples,

and make a map of elemental distribution to locate

defects.14-16

Rice has been produced and consumed as staple

food mainly in Asian countries.17 Recently, significant

amount of rice is also produced in African and

American counties such as Nigeria, Madagascar, and

United States.18 LIBS has been used for rice analysis

for several applications. Kim et al. reported feasibility

of LIBS for quantitative analysis of nutrient elements

such as Mg, Ca, Na, and K at the limit-of-detection

(LOD) level of a few parts per millions.19 As well as

the nutrient elements, LIBS was applied to analyze

the elements of concern for food safety such as Cu,

Cd, and Pb in combination with multivariate

calibration, sample phase transformation, and electro-

chemical preconcentration.20-22 Sharma et al. investi-

gated difference in molecular and elemental compo-

sition between the rice products infected by false

smut disease and healthy ones using Fourier-transform

infrared (FT-IR) spectroscopy, wavelength-dispersed

X-ray fluorescence (XRF), and LIBS.23 Kim et al.

could differentiate pesticide-contaminated and pesticide-

free rice products based on LIBS spectra.19 However,

the majority of researches has been devoted to the

investigation of LIBS performances in authentication

or classification of rice products. LIBS spectra were

successfully used for modeling not only geographic

but also botanic origins of rice.24-28 Various chemometric

algorithms such as support vector machine (SVM),

linear discriminant analysis (LDA), k-nearest neighbors

(k-NN), random forest (RF), decision tree (DF), partial

least squares-discriminant analysis (PLS-DA), and

artificial neural network (ANN) were employed for

those works.

Rice grains are covered by a fibrous, inedible outer

layer called the hull or husk. Removing this outer layer

from rice seeds is an important step in processing

rice for human consumption. The rice dehusking or

further polishing is generally conducted to improve

digestibility, remove impurities, increase shelf-life,

and make rice grains smooth and white. However,

dehusked and further polished rice grains, so called

white rice, have lower nutritional contents than those

of brown rice because more than 60 % of nutrients is

concentrated in rice kernel located in the outer part

of a whole grain. Inorganic elements are also populated

more in the outer part of a rice grain.29-31 Thus, as the

dehusking and polishing processes are conducted

further and further, carbohydrates in the remaining

grains become dominant. Under this circumstance, a

compromise among nutritional contents, shelf-life,

and other benefits of extensive polishing can be one

of the important factors to be considered to provide

better rice products. Therefore, a rapid reliable technique

that estimates rice dehusking or polishing degrees

would be very helpful for controlling the rice polishing

process and assessing rice quality considering nutrition,

shelf-life, aesthetics, and other factors.

Herein, we report a novel application of LIBS as a

reliable technique for estimating the degree of rice

polishing. Rice seed samples were dehusked and

polished for several different times. Then, the resulting

grains were milled and pelletized for LIBS analysis.

Atomic or ionic emission lines of C, Si, Mg, Ca, Mn,

Na, H, Li, N, K, O, and Rb and molecular emissions
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of CN were identified in their LIBS spectra. The

correlation of those intensities with the amount of

polished-off matter was investigated and revealed

the inhomogeneous distributions of those elements in

the rice seeds. The Na I emission line at 589.592 nm

and the Rb I emission line at 780.027 nm showed

linear sensitivity in the widest range of the polished-

off-matter amount, although there was found a

discontinuity in emission line intensities due to matrix

difference between husks and grains. Thus, univariate

models (linear fits) based on the intensities of the Na

I and Rb I emissions were developed and applied to

predict the weight percent of the polished-off matter.

Multivariate modeling of the polished-off-matter

amounts was also performed using PLS-R. For the

PLS-R modeling, Si I, Mg I, Ca I, Na I, K I, and Rb I

emission line intensities were used as predictor

variables. The multivariate model was found to be

more accurate than the univariate ones in predicting

the polished-off-matter amounts. For the rice grains,

the polished-off-matter amount could be predicted

accurately within ~2 wt% by the multivariate model.

Moreover, PLS-R was found to show a dependable

performance in modeling and predicting the polished-

off-matter amounts including unhusked rice seed

samples. Consequently, LIBS calibrated appropriately

can be employed as a dependable technique for

estimating the degree of rice polishing.

2. Experimental

2.1. Sample preparation

A bag of short-grain rice (40 kg) grown in

Gyeongnam, Republic of Korea was purchased for

this work. The rice seeds were polished for the nine

different times, 5, 10, 15, 20, 25, 30, 35, 40, and 45

minutes, using a home rice polishing machine (Baro

Tech, Gimpo, Republic of Korea). A 20 g of each

polished grain sample was taken and put in an agata

vial with two agata balls. Then, the grain sample was

milled for 30 minutes using a ball mill (8000M

Mixer/Mill, SPEX SamplePrep). The milled powder

was pressed into a pellet using a hydraulic press

(CrushIRTM, PIKE Technologies). A 5 g of each

milled sample powder was placed in a 13 mm stainless-

steel die and pressed under 10 tons for 5 minutes.

The sample preparation process is presented in Fig. 1.

2.2. LIBS analysis

To conduct LIBS measurements, a commercial

instrument (RT100-EC, Applied Spectra, Inc.) was

utilized, which consisted of a flash-lamp-pumped Q-

switched Nd:YAG laser (POLARIS II, New Wave

Research) and a 6-channel spectrometer equipped

with charge-coupled device (CCD) detectors. A

fundamental beam from the Nd:YAG laser at the

wavelength of 1064 nm was directed and focused

onto the sample surface, with a laser beam spot size

of 75 μm in diameter. The laser pulse energy and the

repetition rate were 10 mJ/pulse and 10 Hz, respectively.

The spectrometer covered from 180 nm to 890 nm,

and its resolution was approximately 0.1 nm. The

CCD detection gate delay from the laser pulse was

set to 0.5 μs, and the optical emission signal was

integrated for 1.05 ms. For each sample pellet, 25

line scans were conducted. The length of each scan line

was 8 mm. For the line scan, the sample was translated

at the rate of 1 mm/s. Thus, 80 laser pulses were

launched in a 8-mm line on the sample pellet surface,

and the 80 single-shot optical emissions were

accumulated for recording a LIBS spectrum. Two

nearby scan lines were separated by 250 micrometer.

Fig. 1. Sample preparation scheme for LIBS analysis.
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3. Results and Discussion

3.1. Estimation of polished-off-matter amount

The rice seeds were dehusked and polished using a

home rice polishing machine. Setting the polishing

time to 5 minutes, a 500 g of rice grains were polished

once. In Fig. 2(a), the images of as-threshed rice

seeds (S0), and polished rice grains (from S1 to S9).

After the five-minute polishing, the grains denoted

as S1 were obtained. Another 500 g of rice seeds

were polished for 10 minutes. The resulting grains

(S2) are shown in Fig. 2(a). For separate seven more

500 g of rice seeds, the polishing processes were

conducted for 15, 20, 25, …, and 45 minutes. The

resulting grains were also shown in Fig. 2(a) (see the

grains denoted as “S3”, “S4”, “S5”, …, and “S9”,

respectively). The ratio of the remaining grain weight

to the total grain weight after the polishing process is

defined as Winner / (Winner + Wouter). Winner and Wouter

are the weight of the remaining grains and that of the

polished-off matter, respectively. The polished-off

part is actually the outer part of rice seeds. In Fig. 2(b),

the ratio, Winner / (Winner + Wouter), is plotted with

respect to the polishing time. Generally, rice bran

occupies 20 % of an as-threshed rice seed in weight.

Thus, in South Korea, the rice grains with Winner /

(Winner + Wouter) = 0.80 are circulated in markets as a

commercial minimally-processed brown rice which

corresponds to the rice grains polished for 10

minutes in this experiment (see the grains denoted as

“S2” in Fig. 2(a) and the vertical red dotted line for

brown rice in Fig. 2(b)). Brown rice grains contain

almost the whole part of germs. This makes brown

rice more nutritional than white rice. When a 10 %

of weight is polished off from the outer part in

brown rice, the germs are completed removed. In

this case, the corresponding mass ratio, Winner / (Winner

+ Wouter), is 0.72, and this is marked by the vertical

blue dotted line in Fig. 2(b). It should be noted that

the change in Winner / (Winner + Wouter) from S0 to S1 is

remarkably larger than the others. This indicates that

most of husks, which are softer than grains, were

removed from rice seeds within 5 minutes.

3.2. Intensity variations with polished-off-

matter amount

Fig. 3 shows LIBS spectra of the rice seeds (S0),

the husks obtained after the 5-min polishing, and the

grains obtained after 45-min polishing (S9). The husks

show richer, stronger emission lines than the rice

seeds and the grains. Thus, the identified atomic and

ionic emission lines were denoted along the LIBS

spectrum of the husk sample. These assignments

were conducted based on the NIST Atomic Spectra

Database.32 As shown in Fig. 3, atomic or ionic

emission lines of C, Si, Mg, Ca, Mn, Na, H, Li, N,

K, O, and Rb and molecular emissions of CN were

identified in the LIBS spectra. According to the

Fig. 2. (a) Images of rice seeds (S0) and grains polished for
5 − 45 minutes (from S1 to S9) using a home rice
polishing machine and (b) the ratios of the remaining
grain mass, Winner, to the total mass, Winner + Wouter,
with respect to the polishing time. In b, the vertical
red and blue dotted lines indicate the mass ratios
corresponding to brown rice (0.80) and white rice
(0.72), respectively.
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United States Department of Agriculture (USDA)

Database, in dried short-grain rice, carbohydrates are

the major component (91.3 wt%) and the second and

third most abundant nutrients are proteins (7.5 wt%)

and fats (0.6 wt%), respectively.33 Thus, the matrix

element can be identified as C and its atomic

emissions at 193.091 nm and 247.856 nm are observed

in the LIBS spectra. Also, the CN molecular emission

band around 385 nm can be attributed to combination

of C ablated from the sample and N from N2 in

ambient air.34,35 Among metallic elements, K (830 mg/

kg), Mg (250 mg/kg), and Ca (32 mg/kg) are the

three most abundant elements in the dried short-

grain rice at the parts-per-million level. They are

well discernible in the LIBS spectra shown in Fig. 3.

For selected emission lines, their intensity variations

with the degree of rice polishing were investigated.

The degree of rice polishing, D, is defined as the

following equation:

(1)

This is the weight ratio of polished-off matter

(Wouter) to the rice seeds (Winner + Wouter). Among the

emission lines assigned in Fig. 3 (see the panel in the

middle), those at 247.856 nm (C I), 288.158 nm (Si

I), 518.360 nm (Mg I), 616.217 nm (Ca I), 589.592 nm

(Na I), 769.896 nm (K I), and 780. 027 nm (K I)

were chosen for the investigation of intensity

variation. The spectroscopic parameters of these

selected emission lines are listed in Table 1. In the

cases of Mg, Ca, Na, and K, there are stronger emission

D
Wouter

Winner Wouter+

----------------------------------=

Fig. 3. LIBS spectra of rice seeds, S0, (top), husk obtained from 5-min polishing (middle), and grains remaining after 45-
min polishing, S9, (bottom).

Table 1. Spectroscopic parameters of atomic and ionic emission lines selected for analysis. Aki, Ei, Ek, gi, and gk are the
spontaneous emission coefficient, the lower-level energy, the upper-level energy, the lower-level statistical weight, and
the upper-level statistical weight, respectively

Species Wavelength (nm) Aki (s
−1) Ei (cm−1) Ek (cm−1) gi gk

C I 247.856 2.8 × 107 21648.03 61981.83 1 3

Si I 288.158 2.17 × 108 6298.85 40991.88 5 3

Mg I 518.360 5.61 × 107 21911.18 41197.40 5 3

Ca I 616.217 4.77 × 107 15315.94 31539.50 5 3

Na I 589.592 6.14 × 107 0.00 16973.37 2 2

K I 769.896 3.734 × 107 0.00 12985.19 2 2

Rb I 780.027 3.812 × 107 0.00 12816.55 2 4
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lines than those selected, but the weaker selected

lines show the better sensitivity to D. For example,

there are strong emission lines of Ca at 393.366,

396.847 and 422.673 nm.32 When the limit-of-detection

performance is important, employing the stronger

emission lines would be reasonable. However, the

weaker line at 616.217 nm was selected herein because

the better sensitivity of emission intensity with D

could be obtained with the weaker line. The better

correlation of the intensity measured for the weaker

emission line with concentration (or concentration

dependent parameter such as D) is frequently observed

in LIBS-based calibration curves and attributed to

the effect of self-absorption, which becomes more

significant with stronger emission lines.5 Thus, the

weaker lines were used to investigate their intensity

variation. In Fig. 4(a), intensity values of the C I

emission line at 247.856 nm was plotted as a

function of D. Each 25 spectra recorded per pellet

sample shows a relative standard deviation (RSD) of

~4% for the C I line intensity at 247.856 nm, and the

ten samples from S0 to S9 show an agreement of the

C I line intensity within 6 % in terms of RSD without

any spectral intensity normalization to correct pellet-

to-pellet intensity variation. Thus, it is confirmed that

the emission line intensity of the matrix element, C,

is almost constant over the rice samples polished in

different times. However, the Si I line intensity at

288.158 nm varies differently from that of the C I

line (see Fig. 4(b)). The S0 sample (rice seeds)

shows the strong Si I line intensity in its LIBS

spectra, but the intensity drastically decreases as the

polishing time increases (see Fig. 3(b)). This indicates

that most of Si is contained in the rice husks.

Therefore, Si emission lines observed in LIBS

spectra can be used as variables indicating if husks

are removed completely from rice seeds or not.

Fig. 5 shows (a) K I, (b) Mg I, (c) Ca I, (d) Na I,

and (e) Rb I emission line intensity variations with

D. Latent variables for univariate modeling of the

degree of rice polishing were chosen in consideration of

these intensity variations. Except for the S0 sample

that includes husks, all of the emission lines measured

for the grains show monotonous decreases from S1

to S9. The clear discontinuity between S0 and S1

can be attributed to difference in physical properties

and chemical composition between husks and grains.

The variations from S1 to S9 are consistent with the

fact that most of the nutrients are populated in the

outer parts of rice grains. To be used as effective

variables for modeling the degree of rice polishing,

the intensity of a promising emission line should

vary monotonously showing one-to-one correspondence

between intensity and D with enough sensitivity. In

consideration of this requirement, the Na I emission

line at 589.592 nm and the Rb I emission line at

Fig. 4. Intensities of C I and Si I emission lines at 247.856
nm and 288.158 nm, respectively, with respect to the
degree of rice polishing, D = Wouter / (Winner + Wouter).
Each data was labeled with its corresponding sample
code.
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780.072 nm were selected for univariate models to

predict the degree of rice polishing. In cases of the K

I emission line at 769.896 nm and the Mg I emission

line at 518.360 nm, the corresponding sensitivity from

D = 0.16 (S1) to 0.27 (S5) is too low to distinguish the

samples, S1, S2, S3, S4, and S5. Also, the sensitivity

of the Ca I emission line at 616.217 even looks

worse than those of the K I and Mg I emission lines.

3.3. Univariate modeling of polished-off-matter

amount

As mentioned above, 25 LIBS spectra were recorded

per sample. Univariate models were developed with

the nine samples (S1 – S9). The rice seed sample

(S0) was excluded due to the severe discontinuity

observed between the data of S0 and S1. Thus, totally,

225 (= 25 data × 9 samples) data were used for the

univariate models. The 225 data were separated into

two sets for model calibration and validation. For the

calibration dataset, 13 data from each sample’s 25

data were randomly selected and included to form

the dataset with 117 (= 13 data × 9 samples) data.

The remaining 12 data of each sample were included

in the validation dataset with 108 (= 12 data × 9

samples) data. Then, the univariate models based on

Na I and Rb I emission line intensities were developed

using the calibration dataset, and the performance of

these models were validated using the validation

dataset. The accuracy performances in terms of root-

mean-square error of prediction (RMSEP) were

estimated from the validation processes.

Fig. 6 shows the univariate models, which are linear

fits of the experimental data. The two linear fits

obtained using Na I and Rb I emission line intensities in

the calibration datasets are represented by the solid

red lines in Figs. 6(a) and 6(b), respectively. The

fitted parameters, offsets and slopes, are noted in the

corresponding panels. Although RSD of the Rb I

emission intensities obtained for each sample looks

larger than that of the Na I emission line, the linear

fit well describes the intensity variation with D. To

evaluate accuracy performances of the univariate

models, RMSEP values were obtained using the

separate validation datasets. The RMSEP values were

calculated by the following equation:

(2)RMSEP
i 1=

n
Di

Pred
Di

ref
–( )

2

∑
n

------------------------------------------------=

Fig. 5. Intensities of (a) K I, (b) Mg I, (c) Ca I, (d) Na I, and (e) Rb I emission lines with respect to the degree of rice
polishing, D = Wouter / (Winner + Wouter). Each data was labeled with its corresponding sample code.
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In the equation,  and  are predicted and

reference degree of rice polishing that correspond to

the ith test data, and n is the number of data in the

validation dataset. Herein, the number of data in the

validation dataset, n, is 108. The RMSEP values are

listed in Table 2. The univariate models based on the

Na I emission line gave RMSEP values about 0.03;

RMSEP of the model calibrated by the dataset A and

tested by the dataset B is 0.027, and switching the

test dataset, RMSEP is slightly increased to 0.032.

The models based on the Rb I emission line are

found to be inferior to that based on the Na I emission

line in accuracy performance; in the two validation

processes with switched calibration and test datasets,

both RMSEP values are larger than those of the Na

I-based models. This can be rationalized by the larger

RSD (or the weaker intensity) of the Rb I emission

line than that of Na I.

3.4. Multivariate modeling of polished-off-

matter amount

PLS-R is a statistical technique used for modeling

the relationship between a set of predictor X variables

and one or more response Y variables.36 Herein, the

predictor variables are the emission intensities of the

selected lines, and the response is D. With the singe

response variable given in this work, PLS-R worked

by finding latent variables, also known as PLS factors

that explain the variance in D. In consideration of the

discontinuity in D between S0 and the others, PLS-R

modeling was performed with S1 - S9, first.

Fig. 7 shows the results from PLS-R modeling of

S1 - S9. For this modeling, Si I, Mg I, Ca I, Na I, K

I, and Rb I line emission intensities were used as X

variables. That of C I was not used because the C I

emission intensity was found not to be correlated

with D (see Fig. 4(a)). In Fig. 7(a), the explained Y-

variance was plotted as a function of the number of

PLS factors used in the PLS-R modeling. It shows

the first PLS factor explains 72.6 % of the Y-variance

and when the second factor explaining 12.0 % of the

Y-variance is included the model exploits 84.6% of

the Y-variance. The minor ones, PLS factors 3, 4, 5,

Di

pred
Di

ref

Fig. 6. Univariate calibration models (linear fits) based the
emission line intensities of (a) Na I at 589.592 nm
and of (b) Rb I at 780.027 nm. Each experimental
data was labeled with its corresponding sample code.

Table 2. RMSEP values of univariate and multivariate models obtained from the validation

Model Samples RMSEP

Univariate

(Linear fit)

Na I S1 − S9 0.027

Rb I S1 − S9 0.046

Multivariate

(PLS-R)

Si I, Mg I, Ca I, Na I, K I, Rb I S1 − S9 0.023

Si I, Mg I, Ca I, Na I, K I, Rb I S0 − S9 0.029



20 Yonghoon Lee

Analytical Science & Technology

…, do not make significant contribution to explanation

of the Y-structure. Thus, it is reasonable to employ

PLS factors 1 and 2 for modeling. This is consistent

with the observation of RMSEPs shown in Fig. 7(b),

where the RMSEP values, calculated using the

above Eq. (2), are plotted with respect to the number

of PLS factors used for modeling. The RMSEP was

decreased remarkably by employing the two major

PLS factors 1 and 2 for modeling as indicated by the

arrow in Fig. 7(b), and the additional ones, however,

made no significant decrease in RMSEP. As a result,

the major two PLS factors were found to be enough

for modeling D values of S1-S9.

The loadings of the selected-emission-line intensities

to the PLS factors 1 and 2 are shown in Fig. 7(c).

The loadings have positive or negative values because

PLS factors are extracted from the mean-centered data.

The positive and negative loadings are differentiated by

the background colors, white (+) and gray (−),

respectively, in Fig. 7(c). The PLS factor 1 is dominated

by the K I emission line intensity because it shows

the largest variation with D among the selected

emission lines (compare the intensity scales of the

plots shown in Figs. 4(b) and 5(a)-5(e)). It indicates

that the K I emission line intensity shows the most

sensitive decrease with D, but the sensitivity varies

only from S5 to S9. Thus, for a complete model,

other features are necessary.

The PLS factor 2 shows a positive correlation, the

same signs (−) of the loadings, between Mg I and Na

Fig. 7. (a) Explained Y-variance from calibration of the PLS-R model, (b) RMSEP from validation of the model, (c) X-
loadings of PLS factors 1 and 2, and (d) correlation between Dref and Dpred from validation of the model using PLS
factors 1 and 2. These results were obtained by modeling the S1 − S9 samples. The explained Y-variance and the
RMSEP value from the model using the first two major PLS factors are indicated by the arrows in a and b, respectively.
In c, positive and negative loadings are differentiated by the background colors, white and gray for positive (+) and
negative (−), respectively.



Elemental analysis of rice using laser-ablation sampling: Determination of rice-polishing degree 21

Vol. 37, No. 1, 2024

I emission line intensities. This means that both Mg I

and Na I emission line intensities behave alike as D

decreases. Particularly, Na I is found to be able to

supplement the effective sensitivity between S1 and

S5 as well as for the others. The variations of Ca I

and Rb I emission line intensities are smaller than

those of K I, Na I, and Mg I (see the plots in Fig. 5).

Thus, their loadings are also small in both PLS factors 1

and 2. In the case of Si I, its intensity appeared

strongly only in the LIBS spectrum of the S0 sample

which was excluded from modeling. The small

loadings of the Si I emission line intensity in the PLS

factors 1 and 2 can be understood in this way.

Fig. 7(d) shows the correlation between Dref and

Dpred obtained from validation of the PLS-R model

based on the two PLS factors 1 and 2. The corre-

sponding RMSEP is 0.023, which indicates that

the PLS-R model based using the two PLS factors

outperforms the univariate models based on the Na I

and Rb I emission line intensities in prediction accuracy

(refer the RMSEPs listed in Table 2).

The PLS-R model’s accuracy in predicting D

including the S0 sample was also investigated. The

results are shown in Fig. 8. To predict D from rice

seeds, that is S0, the modeling was performed

considering all S0-S9 samples. The explained Y-

variance values was plotted as a function of the

number of PLS factors used for the model in Fig. 8(a).

The PLS factors 1, 2, and 3 explain 52.3 %, 30.0 %,

and 5.6 % of the Y-variance, respectively, which

Fig. 8. (a) Explained Y-variance from calibration of the PLS-R model, (b) RMSEP from validation of the model, (c) X-
loadings of PLS factors 1 − 3, and (d) correlation between Dref and Dpred from validation of the model using PLS
factors 1 − 3. These results were obtained by modeling the S0 − S9 samples. The explained Y-variance and the RMSEP
value from the model using the first two major PLS factors are indicated by the arrows in a and b, respectively.
In c, positive and negative loadings are differentiated by the background colors, white and gray for positive (+) and
negative (−), respectively.
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accumulates to 91.9 %. Each of the other factors

explains less 0.2 % of the Y-variance. Thus, they can

be ignored for modeling. This is consistent with the

observation in the variation of RMSEP with the

number of factors used in PLS-R modeling. The first

three factors decrease RMSEP remarkably, as indicated

by the arrow, and the following ones do very slightly

(see Fig. 8(b)). Under this circumstance, including

the PLS factors 4, 5, 6, … can lead to overfitted models.

Considering explained Y-variance and RMSEP, the

optimal number of PLS-R factors is found to be 3

(PLS factors 1-3). The loadings of PLS factors 1-3

are shown in Fig. 8(c). The loading of PLS factor 1

is dominated by the K I emission line intensity, as

observed in modeling S1-S0 (see Fig. 7(c)). In PLS

factors 2 and 3, Na I and Mg I emission line intensities

are loaded, respectively, as major features. It should

be noted that the Si I emission line intensity shows

significant contributions to the PLS factors 2 and 3

unlike that in the modeling of S1-S9. This is due to

inclusion of S0 of which LIBS spectrum shows

strong Si I emission line intensities. The correlation

between Dref and Dpred is plotted in Fig. 8(d). This

was obtained from the model developed using the

three major PLS factors. The corresponding RMSEP

is 0.029, as listed in Table 2.

4. Conclusions

To our knowledge, this work presents the first

investigation into the feasibility of using LIBS as a

reliable technique for bulk analysis of the rice-polishing

degree. Using a typical LIBS system assembled with

a nanosecond-pulsed laser and a multi-channel CCD

spectrometer, the polished-off-matter amounts could

be measured with the accuracy of ~2 % with the aid

of multivariate PLS-R modeling. This modeling is

based on the variation of elemental composition from

periphery to inner grain of a rice seed. Although

several emission lines showed intensity variations

with the degree of rice polishing, the sensitivity of

most emission lines was not linear in the enough

range of the degree of rice polishing to cover rice seeds,

brown rice grains, and white rice grains, together.

Among the seven emission lines of which intensity

variations were investigated, those of Na I and Rb I

provided dependable univariate models (linear fits)

covering brown and white grains with accuracy of 3

-5 %. However, the multivariate PLS-R modeling,

that took account of the emission lines of Si I, Mg I,

Ca I, Na I, K I, and Rb I, outperformed the univariate

models. This suggests that the sensitivity provided

by those six elements is more or less complementary

to one another. Also, the multivariate PLS-R provided a

reliable model encompassing rice seeds and grains.

Particularly, the Si I emission line was found to provide

the sensitivity for the husks contained by rice seeds.

Overall, our results indicate that LIBS combined with

appropriate modeling approaches can be a useful

bulk-analysis technique for assessing the degree of

rice polishing which is an important factor closely

related to nutritional contents, shelf life, price, and

appearance of rice products.
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